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TOWARDS A STATISTICAL ANALYSIS OF GENETIC SEQUENCES DATA
WITH PARTICULAR PEFERENCE TO PROTEIN SEQUENCES.

by

SPYROS P. APSENIS

ABSTRACT

This report develops a variety of character matrices as graphical tools
for the visual examination of genetic sequences and in particular protein
sequences. The NC, PNC, BNC1, BNC2 and BNC3 matrices are designed to filter
noise without severely suppressing signals in the CC matrix. The Matrix Smear
of a character matrix is introduced as a measure of signals and noise in the
matrix. The asymptotic distribution of the smears of the CC and NNC matrices
are derived under the independence model. The asymptotic result is used in
:. nonnction w. th exact confidence intervals from diagonal smears to automate

- zar-ia=v ie :sual examination of character matrices. A generalized likeli-
-iood ratio procedure is developed to automate fully the detection of signals

* in two protein sequences. A simulation study has proven the procedure to be
powerful and robust in detecting .. ignals of success probability .90 and
length 9 implanted within noisy binary strings of length 291 characters and
success probability .15.

Some Key Words: Genetic sequences, DNA, Matrix Smear, Character Matrix Graphics
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1. ITRnODUCTION, * IOLOGICAL IACKGMOTND AND NMNC

Thae subject of this research is the development of a statistical

methodology to analyze protein and DMA sequence data. Various data

anal:'tic tools presented here: their development was motivated from the

examination of fourteen DNA sequences which encode nroteins forming the

eggsaell of the American silkmoth Antherea polyphemus-. The genes were

sequenced in the laboratory of professor Fotis 1afatos.

The question that was initially posed by 7otis afatos, was to

. cluster the fourteen ,enes on the basis of tl-eir similarities within

regions where sinilarities had already been letected. A neasure of

sirilarity between strin-s was developed and its application to the

rez ions "ihere the genes had been detected to be similar produced

custers that made good biological sense.

To find out if thiere were other reions where the fourteen zenes

were similar, Zrapiiical ways to represent the data were required. Tnrou-h

these it became clear that the ;enes shared similarities far more

extensive than nreviously detected and that there -was a lot of structure

within each gene, basically in the form of consecutive repeats of a basic

- repeat unit.

Chapter 2 presents a variety of character matrices as 1raphical

tools to allow the investigator to look into string data. These matrices

are designed so as to reduce the matrix smear - which is a measure of

*signals" and 'noise' in the data - without suppressing "signals*.

C'iapter 3 presents an ayvmtotic result for t :e istribution of the smear

of some of the matrices of chapter 2, under the assumption that strings
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are written independently between and within themselves. Chapter 4

compares the matrix to the diagonal smears .to automate, the visual

examination of character matrices. Chapter S develops a machine

examination of character matrices by listing the significant substrings

of the words which maximize a generalized los-likelihood ratio for the

hypothesis that for two parameters p0 and pl, PolP1' the probability of a

match is smaller than p0 vs. the alternative hypothesis that it is larger

than P1 . Chapter 1 now presents the biological background necessary to

pose questions relating to genetic sequence data and concludes with the

presentation of the chorion data set. The compendium is based on Dayhoff

[61, Hood [8], Mahan [10], and Watson [15].

Observed via a microscope, chromosomes are paired threadlike

structures in the nuclei of living cells. Since the beginning of this

century, chromosomes were recognized to be responsible for the

transmission of the hereditary properties of organisms via their

subunits, called genes. As little had been known about their structure at

the molecular level, however, genes were considered as black boxes until

rather recently.

A chromosome is a giant DNA molecule. Proposed by Watson and Crick

in 1953, the structure of DNA is that of two intertwined strands giving

the molecule the shape of a double helix as illustrated in figure 1-1.

The backbone of each strand is provided by the sugar molecule

deoxyribose. The structural formula of deoxyribose is shown in figure 1-

2. On the one apex of the pentagonal ring stands an oxygen (0) atom, the

other four being occupied by carbon (C) atoms. On the deoxyribose

molecule there are five C atoms indexed by the integers 1. 2, 3, 4, and

..................................................*],
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5 in fi;ure I-2. Attached to the I C atom is one of the four :olecules:

- adenine (A), guanine (G), cytosine (C) and thyrine (T). These four

together with uracil (U), which will be referred to later as a building

block of .7A, are called bases.

O 

I.
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Figure 1-2. The structure of 
the deoxyribose 

molecule.
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Figure 1-3. Th~e structural formulae of he five bases

adenine, guanine. c.osine. uracil and t*i--.ne.

The structural formulae of the five bases are shown in figure 1-3.

To the 3 and 5 C atom sites of deoxyribose are attached phosphate groups

P04 ) that rrovide the links between successive sugar molecules in

the DMA strand as illustrated in fiure 1-4.

N N

N LWN

mo

Fi.ure 1-4. The structure of a strand of a DNA =molecule.
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The combination of the deozyribose molecule with one of the bases

and the phosphate group is called a nucleotide. The phosphate and the

deoxyribose always being the same, nucleotides are denoted by the basek.

molecules T, C, A, G, or U which are attached to the deoxyribose.

The helical str-ucture of DNA is =ade possible v bonds amonz bases

in opposite strands. In particular, thymines bind to adenines and

-guanines to cytosines ('base pairing rules'). Consequently, DNA =ay be

presented by the sequence of nucleotides in one strand, together with the

direction in which that sequence is read. The convention established in

the biochemical literature is that a sequence of letters from the

a!phabet of T, C, A, 7 represents the nucleotides from the chain end on

the . C atom of deoxyribose to that on the 3 C site. ".Tith this

convention, DNA sequence data will be considered as words written in the

- alphabet of the four bases (T,C,A.G). They will be denoted as finite

sequences ...... ), ifor {T,C,\,G.

At the molecular level, a -ene is a piece of the DNA molecule

usually several hundred base letters long. A zene encodes and, under

certain conditions, directs the synthesis of a protein as is sketched

later on in this section. The protein coding portion of a 3,ene starts

with the letters ATG and ends with one of TAA, TAG, or TGA.

?roteins are =olecules found throughout living organisms acting as

enzymes (catalyzing various biochemical reactions) or forming membranes

of cells and other cellular structures (playing a structural role). The

building blocks of proteins are the amino acids. Table 1-1 gives the

alphabet in which the twenty amino acids are conventionally abbreviated.
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Table 1-1. 1-letter abbreviations for the twenty amino acids.

1 Phenylalanine F 11 Isoleucine I

. 2 Leucine L 12 Methionine M

3 Serine S 13 Threonine T

4 Tyrosine Y 14 Asparagine N

5 Cysteine C 15 Lysine K

6 Tryptophan W 16 Valine V

7 Praline P 17 Alanine A

8 Histidine H 18 Aspartic D

9 Glutamine Q 19 Glutamic E

10 Arginine R 20 Glycine G

For our purposes, and in the absence of other information about

their structure, proteins are words written in the alphabet of the twenty

letters of table 1-1 and denoted as finite sequences I

for all I; in the alphabet of the twenty letters. A protein sequence is

written in the direction in which its encoding DNA sequence is

conventionally written, each amino acid encoded by three consecutive

nucleotides as will be explained below. Proteins and DNA sequences will

be interchangeably referred to as words or strings; stretches of the

above will be referred to as syllables or substrings.

The synthesis of a protein is directed by its corresponding gene

through the following two step mechanism:

(1) Transcription of DNA to mRNA. One of the two strands of

the DNA molecule-acts as a template which appropriate enzymes copy into

RNA, a chemically similar molecule. RNA is a single stranded molecule

built up of nucleotides bound to each other as in DNA. The bases in the

MNA nucleotides are A, G. C, and U. They are respectively copied from the
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T, C, G and A bases of the DNA strand under transcription. The

transcribed RNA strand subsequently undergoes Isplicing$. In particular,

regions of the RNA strands, called *introus' for intervening, are removed

and the remaining regions, called lexons", are joined together to form

the messenger RNA. ( mRNA

(2) Translation of the uRNA to the protein. The mX A acts as a

template which in conjunction with other components of the cell

ribosomes, tR.NA. etc) directs the assembly of a string of corresponding

amino acids as specified by the gemetic code.

The genetic code is shown in table 1-2. It maps each triplet of

consecutive nucleotides, called a codon, to an amino acid eicept for

codons UAA, UAG, UGA. The latter codons monitor the end of the protein

coding region of the gene and are called terminator codons. Codon AUG is

used as an initiator or for encoding methionine internal to the protein

chain. Since 61 codons are mapped into 20 amino acids, amino acids are

bound to be encoded by more than one codon.

Table 1-2. The genetic code with codons entered in a three way
table.

UUU F UCU S UAU Y UGU C
UUC F UCC S UAC I UGC C
UUA L UCA S UAA Term UGA Term
UUG L UCG S UAG Term UGG V

CUU L CCU P CAU I CCU I
CUC L CCC P CAC I CGC I
CUA L CCA P CAA Q CGA I
CUG L CCG P CAG Q CGG R

AU I ACU T AAU N AGU S
AUC I .ACC T AAC N AGC S
AUA I ACA T AAA K AGA R
AUG N ACG T AAG K AGG R

GOD V GCU A GAU D GGU G
GUC V GCC A GAC D GGC G
GUA V GCA A GAA E GGA G
GUG V GCG A GAA 9 GGG 9
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Supported by fossil and biochemical evidence, the fundamental

evolutionary scenario of biology, postulates that billions of years ago,

life on earth existed in a simple ancestral form. 7hile organisms

evolved from their cor.mon ancestor, numerous mutations accumulated on

their genetic material. !utations occur in individual organisms by

chance; over time they : ay spread through or disappear from the

population. Their laws are studied in evolutionary biology and population

genetics and are not directly relevant in the present discussion.

The fundamental scenario adapts to the biochemical level of

description of organisms as follows: living or-anisms undergo mutations

on the~r ;enetic material. utations of two hinds have been observed. A

base nay suost-.ute another in a DNA strand and -ive rise to a noint

=ut a=: :3ct~ons of a gene, whole genes, or microscop-ically visible

n eces _::.,r) :csomes nay duplicate, become deleted, or translocate.

Segmental -uta:ons refer to the above events incurring on fractions of

;enes. rarons are said to be selectively deleterious to the

iniividual organism on which they are imposed if they increase the

ik kicod 1f 1a~r :he individual organism dies or leaves fewer

descendants. Other mutations may offer the organism selective advantages,

or may be selectively neutral. Gravely deleterious mutations are censored

b'/ natural selection; selectively neutral or even slightly deleterious

:utations may survive or even become fixed in the population by chance.

Figure 1-5 presents the coding portions of the fourteen genes

under analysis. The ienes are given as Z92, 292a, Z92b, 609, 13, 11b,

l3c, 401, 401a. 401b, 408, 10, 10a, and 10b. On the basis of their

extensive similarities, genes 292., 92a, and 29:b, are collectively

called :92 copies. ( Similarly for 13, 18b, and 13c etc.) The first seven

" " . .. ' - " " - " ." . . ,
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genes will be referred to as family A. Family I comprises the last seven

genes.

On the basis of when their protein products are formed during the

K formation of the eg2shell. 292 copies and -ene 509 form the middle A

subfamilv: the copies of 18 forn the late A subfamily. The late 7

subfa=il; is a o: :ze copies of 401 while -ene 410 an' the copies of

10 for= the =iddle 3 subfamilv.

VI

b 0

0I
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2. CHARACTER MATRICES AS EXPLORATORY TOOLS FOR GENETIC SEQUENCES DATA

The proteins encoded by the chorion genes under analysis are listed

in figure 2-1. Human vision is inadequate to detect structure within or

similarities between the proteins as they are presented. This chapter

introduces a varietyv of character matrices which proved useful in

bringing out similarities between different proteins and repeats within

proteins. Character matrices have been constructed for DNA and amino

acid sequences throughout this research. In this chapter they are

introduced in the general context of two words and illustrated for some

of the proteins of figure 2-1.

Let I = (X1 e .... Xm) and Y (Y1 .... ,yn) be words written in the

alphabet (al,...,a s. X and Y may or may not be the same. The Crude

" Character (CC) matrix for X and Y is defined by:

X. if X =Y1
M i i i(2.1)
(blank) otherwise.

and j=l,....n.

The idea of using two dimensional arrays to look into string data

appeared first, latently, in figure 1 of Needleman and Wunch [1I] in

their exposition of an algorithm to compute the longest common subsequnce

between two words. CC matrices were also explicitly constructed in Gibbs

and McIntyre [71

Character matrices are useful exploratory tool for looking into

sequence data because a substring common to the two words shows up as

0 a diagonal in the CC matrix for the words. Figure 2-2 presents the CC

matrix for the proteins encoded by genes 292 and ISB. Two major,

relatively solid diagonals can be distinguished on the CC matrix of

." - "- . .
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fig-ure 2-2. T-e longest diagonal consists of entries

(?!7s,63,...,!119,l17) and indicates that syllables M7150... 1 X1 2 9 ) and

(63 ,....Yll7 ) are similar in the sense that Xi Y1 4 1 2  for i-63....1

except for a few occasional mismiatches. The structure of the matrix bloclh

correspondin; to X40O ... Ix~l and (Y 9 ..., lY5  will become clear in

mat:ices to be presented later. Vor the moment it is note(s that t.e

longest diagonal in the block is ~ ,3..!94)and parallel to it

and within the block run other shorter diagonals. In a character matrix

for two words, the appearance of parallel dia-onals at a substring of

*one of the words signif ies the existence of internal repeats in the

other viord, as illustrated in figure 2-3.

.-i;ure 2-3. Parallel diasonals at a subst.-in-, of X are due to and

signify repeats of the substing in Y.

The CC matrix for X-Y brings out internal repeats within word

It is syt.~etric and its entries iiare nonblank. The CC matrix for

protein 292 is presented in figure 2-4. (It is not square only because

*the characters of the LP used are rectangular.) The diagonal string

................'5,6)marked on figure 2-4, runs parallel to the solid

diagonal of the =atrix and is formed by the repeat of the syllable
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S(X42 ..... s1 ) as ( 5  . .61 except for one mismatch.

The usefulness of CC matrices is limited by two factors: their size

and 'noise* associated with them.

A common line printer can print up to 8 lines per inch vertically

and up to 132 characters per line horizontally. Therefore, when printed

on a line nrinter, the CC zatrix for a word of 500 characters (a

, length cozmon for DNA sequence data) is longer than six feet. To

diminish the size of the matrices the investi3ator has to prepare

successive photoreductions at the expense of papercutting and

rapernasting. This limitation =ay also be circumvented by presenting

character on a plotter. A digital plotter applies a large rid

(for example of 4095 by 3124 sites) on a sheet of paper of desirable

dimensions. A character =atrix in blanks and dots may then be plotted

bv placing dots instead of alphabet characters at the appropriate -rid

sites.

TYe second limitation of CC matrices is more serious. In

attempting to trace diagonals the human eye is distracted by characters

wich are are bound to appear only because of the composition of the

-_ :'lords. In particular, ii the counts of alphabet characters aI,... a5 in

X and Y are .. ......m and n .... ns respectively, the CC matrix for

s

X and Y contains ; mini nonblank characters. "Ience, the ratio of

nonbIank characters to all the characters in the matrix is:

5
.3i n i* S(XY) =/ (2-2)
-m n1

where n 'm and ni/n are the relative frequencies of a i in the two

words. 5(X.Y) in (2-2) will be called the matrix smear for the CC

0I

" +" " " .: - , , , ,, . ... . ... . .+ . - - ... .. . .- '.
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matrix of X and Y.

If X is independent of Y and (Xt } t-1 .... m and (Ytj til...,n are

I.I.D. with Pr(Xt=ai)-pi and Pr(Ytz-i)-q i for all t and i, the matrix

smear is a sample estimator of the parameter

s

1

a will be called the theoretical smear for the CC matrix of.X and Y.

Under the above independent assumptions the theoretical smear is the

probability of a nonblank character in the matrix.

The matrix smear of the CC matrix for two different words ranges

from 0 (for words with no alphabet character in common) to 1 (for

words written in one letter). The matrix smear for the CC matrix for the

word X is

S i  2

S(M) ( 2 (2-4)
* 1

S(X) is minimized when mi=...=ms . Te amiinum attained is the inverse

of size of the alphabet in which 1 is written. Table 2-la lists to the

second decimal digit the smears for all iairs of chorion proteins.

Table 2-1a. Smears of CC matrices for all pairs of chorion proteins.

292 292A 2923 609 iS 13n 13C 401 401A 401'. 4030 10 10A 10r
292 .12
292A .12 .12
29213 .12 .12 .12

609 .12 .12 .12 .12
13 .13 .13 .13 .13 .15

Sb .13 .13 .13 .13 .15 .15
18C .13 .13 .13 .13 .15 .15 .15
401 .13 .13 .13 .13 .15 .15 .15 .15
401A .13 .13 .13 .13 .15 .15 .15 .15 .15
4013 .13 .13 .13 .13 .15 .15 .15 .15 .15 .15
408 .12 .12 .12 .12 .13 .13 .14 .13 .13 .13 .13

10 .12 .12 .12 .12 .13 .13 .13 .13 .13 .13 .12 .12
10A .12 .12 .12 .12 .13 .13 .13 .13 .13 .13 .12 .12 .12

103 .12 .12 .12 .12 .13 .13 .13 .13 .13 .13 .12 .12 .12 .12

: ,./ '. "> i .'.. ' "-.> . " " . -.' .." .." .. 7 ' . . . , . ".." .-. ', . -'. - .. . - .-- - - ,. ' - -.-. . -,
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Smears for all pairs range from 12% to 15%. Matrix smears within

subfamilies are stable as can be seen from table 2-lb below.

Table 2-lb. Range of smsrs of CC natrioes vithia
subfamilies of Chorion proteins.

Middle A Late A Late B Middle B
Middle A .12
Late A .13 .15
Late B .13 .15 .15
Middle B .12 .13-.14 .13 .12

The matrix smear specifies the number of non blank characters

appearing in A given matrix and can be thought of as a measure of

@signal* and 'noise' in the data. Is it possible to reduce the smear

without substantially supressing diagonals in the matrix? Recall that the

(ij)th entry of the CC matrix was defined by comparing I to Y. Now

consider the Next Neighbour Considered (NNC) character matrix for I and

Y, defined as:

M. = if I =Yj and i.Y (2-5)

= otherwise.

i1 ..... m-i and jil....n-l.

Figure 2-5 presents the NNC matrix for proteins 292 and 18B. It

clarifies the extensive repeat structure in the block formed by

(X140,...uX61) and (k9 ..... and brings out the features that 292 and

18B share in common. If the syllable (aia j ) occurs mi,j and ni j times in

I and Y, then

S S S S

i-i j-1 i-i j-1

and the ratio of noublank entries of the NNC matrix to the total number

of matrix entries is:

0 .
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s s
S (X, fl. (2-6)

-- M-1 n-1

The ratio of equation (2-6) will be called the smear of the NNC

matrix of X and Y. The smear of the NNC matrix for one word becomes

s$3

11 i

and attains a minimum equal to the inverse of the square of the alphabet

size. Table 2-2 lists up to the second decimal digit the smears of the

NNC matrices for all chorion proteins.

Le Table 2-2. Smears of NNC matrices for all pairs of chorion proteins.

292 292A 292B 609 18 18B 18C 401 401A 401B 408 10 10A 10B
292 .02
292A .02 .02
292B .02 .02 .02
609 .02 .02 .02 .02
18 .02 .02 .02 .02 .03
18B .02 .02 .02 .02 .03 .03
18C .02 .02 .02 .02 .03 .03 .03

401 .02 .02 .02 .02 .02 .02 .02 .03
401A .02 .02 .02 .02 .02 .02 .02 .03 .03
401B .02 .02 .02 .02 .02 .02 .02 .03 .03 .03
408 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02
10 .02 .01 .01 .01 .02 .02 .02 .02 .02 .02 .02 .02
10A .01 .01 .01 .01 .02 .02 .02 .02 .02 .02 .02 .02 .02
10B .02 .01 .01 .01 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02

Smears of the NNC matrices range from 1% to 3%. Those for the NNC

matrices for the same protein vary between 2% and 3A compared to the

minimum .25%. For proteins 292 and 18B the smear of 13% for the CC matrix

is reduced to 2% for the NNC matrix.

NNC matrices eliminate a number of noublank characters appearing

on CC matrices that only blur diagonal strings. On the other hand,

corresponding to two syllables that are identical except for one

mismatch, the CC matrix produces a diagonal that is broken at one point

: ° .-. .o. .
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while the NNC matrix breaks the diagonal at two entries. This suggests a

third character matrix for which Xio j are defined after comparing the

3-letter syllables (XIijXi,Xi+i) and (Yj-jly'T ij+,) as follows:

Ii  if Ii-yj and (li1l-Yj-l or Ii~l-Y

i,j  if X.2i-nYj I , Xi#!Yj  Xi+I-Yj I  (2-7)
" if otherwise.

i=2....,m-l and ji2...n-l.

The matrix defined in equation (2-7) will be called Both

Neighbours Considered and abbreviated by BNCl, the index 1 appended to

the acronym BNC to distinguish it from other matrices defined by

Scomparing 3-letter syllables. Figure 2-6 presents the BNC! matrix for

proteins 292 and 18B. The BNC1 matrix allows up to nonconsecutive

mismatches in similar strings without breaking their diagonal. Table 2-3

presents the smears of the BNC1 matrices for all chorion proteins.

Table 2-3. Smears of BNCI matrices for all pairs of chorion proteins.

292 292A 292B 609 18 18B 18C 401 401A 401B 408 10 10A 10B
292 .04
292A .04 .04
292B .04 .04 .04

- 609 .04 .04 .04 .05
18 .05 .05 .05 .05 .06

K 18B .05 .05 .05 .05 .06 .06
13C .05 .05 .05 .05 .06 .06 .06
401 .05 .05 .05 .05 .06 .06 .07 .07
401A .05 .05 .05 .05 .06 .06 .07 .07 .07
401B .05 .05 .05 .05 .06 .06 .07 .07 .07 .07
408 .05 .04 .04 .05 .06 .06 .06 .06 .06 .06 .06
10 .04 .04 .04 .04 .05 .05 .06 .06 .06 .06 .05 .05
1OA .04 .04 .04 .04 .05 .05 .06 .06 .06 .06 .05 .05 .05
10B .04 .04 .04 .04 .05 .05 .05 .06 .06 .06 .05 .05 .05 .05

The table indicates that the smears of the BNC1 matrices for

chorion proteins range from 4% to 7%. The smear of the BNC1 matrix for

proteins 292 and 188 is calculated to be 5%, between that of the CC (13%)

and the NNC matrix (2%).

0 ; - "--:" . ."- -:":,::- . .. ._" .."' , ' , ': ,:: :::..': :. ?. .,
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Another BNC matrix, called BNC2, is defined by

ii- and (Z il-oij_1 or li+I-Y +1 ) (2-8)
S 9 • otherwise.

i-2,...,m-1 and j-2.....-1.

The BNC2 differs from the BNC1 matrix in that it suppresses the "*0 of

equation (2-7). For comparison purposes, the BNC2 matrix for proteins 292

and 18B is presented in figure 2-7.

Finally we define the BNC3 matrix as:

= if Xi -l =Y jl - Xi-y j  and i+l-Yj+l

*' " if otherwise. (2-9)

i-2,...,a-1 and j-2,...n-1.

The BNC3 matrix for proteins 292 and 18B is presented in figure 2-8.Table

2-4 lists the swears for the BNC3 atzices for all pairs of chorion

proteins up to the second decimal digit. Smears less than .01 are not

entered in the table.

Table 2-4. Smears of BNC3 matrices for all pairs of chorion proteias.

292 292A 292B 609 18 18B 18C 401 401A 401B 408 10 1OA lOB
292 .01
292A .01 .01
292B .01 .01 .01
609 .01 .01 .01 .01
is .01 .01 .01 .01 .01
18B .01 .01 .01 .01 .01 .02
18C .01 .01 .01 .01 .01 .01 .02
401 .01 .01 .01 .01
401A .01 .01 .01 .01 .01 .01
401B .01 .01 .01 .01 .01 .01 .01
408 .01 .01 .01 .01 .01 .01 .01
10 .01 .01 .01 .01 .01 .01 .01 .01
10A .01 .01 .01 .01 .01 .01 .01
10B .01 .01 .01 .01 .01 .01 .01 .01 .01 .01

As can be seen from table 2-4 the smears of the BNC3 matrices for

chorion proteins range up to 2%. Those for the same protein vary from 1%
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to 2% compared to the minimum 1/203 = .0125%. The BNC3 matrix 'filters*

the data rather severely and suppresses diagonals that were discernible

in less restrictive matrices presented previously.

The entries of all matrices defined so far are blanks, asterisks

or alphabet characters. It is clear that in a quantitative assessment of

diagonals the types of matches and mismatches should be taken into

consideration, matches of rare letters being more "significant" than

those between frequent letters. However, visual examinations of character

matrices are not elaborate enough to take the nature of matches or

mismatches into account. In whichever matrix is available, the

investigator is searching for long diagonals with a large number of

matching nonblank characters relative to the length of the diagonal.

Thus for purposes of visual examination a matrix entry may be reduced

to a blank or a non-blank character.

The five types of character matrices introduced in this chapter are

conceptually and mathematically related. The (ij)th entry of the NNC

matrix was defined after comparing Xi to Yj and their next (right)

neighbours Xi l and Yj+ 1. Instead one might compare the previous (left)

neighbours li_ 1 and Yi-1 and construct the Previous Neighbour Considered

(PNC) matrix. The superposition of the PNC to the NNC produces the BNC2

matrix.

The design of various character matrices to reduce the smear and

enable the investigator to discern existing diagonals, was previouly

called 'filtering' of the data. The term has not only a heuristic

appeal; for the NNC, PNC, and BNC3 matrices it is used appropriately

in a technical sense too. Indeed, we can consider these character

matrices as CC types of matrices on the data after they are transformed
S
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appropriately. In perticular, consider transforming the sequences t},

til,...,m and [Yt) tl...n as:

rz.~i ~i 1,.. ,m-

Then the NNC matrix can be thought of as a CC type of matrix on the

transformed data. The transformations corresponding to the PNC and BNC3

matrices are

it= tj j -

and

- t-i] 3 F= 1

; " I- - js]l -,..,-

respectively.

The NNC, PNC, BNCI, BNCZ and BNC3 character matrices were designed

in order to reduce the noise in the CC matrices and make signals easily

discernible. Of those, the NNC and PNC and BNC3 matrices suppress

signals as well. A syllable of length L present in common in I and 7

gives rise to a diagonal string of length L-1 for the NNC and PNC

matrices and L-2 for the BNC3 matrix. The BNC2 matrix does not suppress

signals but does not allow for mismatches; when a substring is common to

the two words except for a mismatch, the diagonal corresponding to the

syllable carries a blank character at the site of the mismatch. While

filtering noise, the BNC1 may be thought of as enhancing signals as it

does not allow occasional nonconsecutive mismatches in a syllable which

is otherwise shared by I and Y, to brake the diagonal corresponding to

it.

I
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3. STATISTICAL P.OPEPTIES OF S.E I.S OF CIIARACTER .ATPICES

The CC, .4C, PNC, "IC1, "1NC2 and RMC3 character matrices were

introduced in chapter 2 as graphical tools to explore string data. T7is

chapter derives some of the statistical properties of the smears of the

CC and N C matrices. The statistical properties of .-atri- smears depend

on the model under "hich zords are written. The -odel the most tractaole

to work with is the independence model. The independence -odel supposes

that words (XI ad Yi(y),Y2n .....Y). written in an

alphabet of s characters (a,...., as), are independent sets of

independent observations distributed as:

Pr(Xt=ai)=pi iil,....s and t=i....m

and Pr(Yt=ai)=4i i=l, .. ,s and til .. n.

Propositions 3-1a and 3-2a derive the first t*-o moments and the

asymptotic distributions of the smears of the CC and NTC matrices for

two different words X and Y. Propositions 3-lb and 3-2b lerive the sane

results matrices of one word X.

P-oiosition 3.1a. LTt S(.Y) 3e the smear of t.he CC matrix of 7' and _

defined in (2-2). Under the independence model.

"a Xv (3-1)

ahere a is the theoretical smear defined in equation (2-3)

and s s
(n-i) + 2q qk

VarS(X,Y) ( 3-2n-i a2  I)
-n "in ,n

Ss s

% q " - 2 - ( - - ) a as m- and n- =.
M n

- . .. . . . . . . .
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If (mi/n) -4% as n-~and

S S

and V p.qlz + X p, - 2 (3-.4)
k=1 k=1

?roof. T'.e smear of t-e CC matrix can be written as:

mn

Sae (X,'y) 1i i= (Z-6)

~aeo t! te r# i s e

iaere fore.

s

= = ~?r(X =Y7 )=, .q,

tae :1,!1 of tae above equation being the theoretical smear defined in

e~zxat.on To-~ co-mtate tie variance of S(.) we evaluiate variances

anU: covar2.ances anon, the variables.

* If i#V Cov(o('i.,Y 4.0"1.y2 2

7ence

Ae-
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-1 n ".I U n

-"'arS(XY)- Varo(xi Y + / ' Cov(O('Xi'Y ).O(,Ii'Yv

i-1 j- i-l j-1 V-l
j #v

M Ul U

/' /'Cov(o(,Vi,Y ),O(XuYj)

i-1 j=1 u-i

S S
: n(i-c) mn(n-i)(/ pkk -,') + nn(n-l)() "p.7qk- &2).

Equation (3-2) is obtained by dividinc both sides of this equation byS2(Mn).

To derive the asymptotic distribution of the smear of the CC

matrix. note that equation (3-5) presents S(X,Y) as a rJ-statistic.

Therefore if (n) X as m -* and n -Y , the asw.ptotic

distribution of S is normal (see, e.-., theoren 9, p.364, in Lehnrann [9].

in particular

D
M(s(x.Y)- a) -. ,1(o.V)

for V = T01+ iln2 ,  (3-7)

.where a1  Var,1i0 (Xt). 2 Vari0i(Yt)where I0 101 '1

and !:i0x) = .(:'Yt)-- = ?r(YVt=x)-a

*'1 0 !(y) = E X~) = pr(.'-t=t)-a*

S

"lence clO2 = ,_ p(-- )2

k=1

s

01" =l qk. k - ) '

k-1

and (3-4) is obtained by substitutins the above expressions for al0 and

lol into eauation (3-7).

7enark that if i-- and n- so that (n/n) -4, -VarS(X,Y)- V,

U .:-: . : : . : . . : : + : : , : : : -: .= . + : . . . : .: , : : . . : .. .
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ti.e. he limit of the variance is the variance of the asvr.'Dtotic

distribution of S(X,Y).

The asymptotic result of proposition 1 =ay also be obtained by the

6 method. The 3 method is used to prove the asymptotic result in

proposition 3-1b which can be may also be proved by the 1-sample U-

statistics theore=.

?ronosition 3-lb. Let S(:) be the smear of the CC -atrix of X, Under the

independence model,

s s

FS (7) = -(--Iz-.-/ ~ as n-,S
M 2"" k=1 ~

and

I. s s

3 3
2 "-3/.? - 4(-l)(n-2) .:P3 2(.n-l) 3(mn-3) _.T - I)

k=1 ""=l

S S
4
- - . 3.) , - (3-9)

.urthermore, as n -4

S s S
m(S X) - -,. :0 t i p. _

"roof. As noted in chapter 2 a CC matrix for one word carries a solid

iiagonai throughout. -or '(=Y, equation 3-5 becor.es

+..3/. 0 (Xi'X) / 0 C7(i'j

i= j=1 1 ij
2 . (3-11)

s
I

* nt.er t-e independence assumption, for i~j, (. "X) = and

k=1

". equation (3-3) follows by taking expectations of both sides of (3-11).6
" ; --" " -.:. . ~i ..:-i. i i12 .., i:2 .ii-- ..:i-_i2--:7 i.'---? .-.. " -- i
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For notational convenience let

a

2 Pk 2. (3-12)
k-1

To compute the variance of S(I) ye evaluate covariances among the O's.

Cov(0( 1 i1 i ) ,0(I I) Varo(lix i)

if i~j Var0(i, I)

*If i~u,i~v,j~v. and j-Av C~((i1)0xp ) 0.

If i~ij,j~kk.i~k Cov(*(Xi'Xi )D0(xi.xk))= E0(Xi'i )O(XiIxk)- 2

S

=Pr(lui Wi fk)-2 W 2Pk 3- 2.

k-1

0 Hence,

m4VarS(l) VaoX= i )+ C~((iXi)OXsi)

i~j i~j

+ COV(O(I.IJ~ i).O(i,.Xk ) + COv(0(XiIJIJ)10(XkIIX) +

ii ki j
i~j i~k j Ok iiij i~~k j;Ok

+ C~((X' ),(Iklx i) + COv(0(1i*Xi ).0(Xj#Xkm

i jk i k
i~j i~k j~k i~j i~k j ifk

S

* k-1.

and equation (3-9) is obtained by dividing both sides of the above

equation by

* To derive the asymptotic distribution of the smear Of the CC matrix

by the 6 method, let Mi be the count of alphabet character ai in

1-(11'e. ., 1 2), and let Dp(M1 /m) be the frequency Of characte- a1 in

* and ;&T pl1'..,ps)' Then ( 1 .. M)is multinomially distributed with

TT

multinomial distribution, 4jn(;-p) -~N(0,D P-p where D Pis the
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A

diagonal matrix with the entries of vector p along the diagonal, and

consequently M-p1Q (l/4m).$p

Let $(p)=2 pk2 . From equation (2-4) it follows that S(X) = g(). Then

k=1

g(1)-g(p)+(grad S)T. (P-p)+Cm pO

with e,-- O as

Substituting grad g= 2p and multiplying the above expansion -by 4m we

obtain

Therefore, m(g(;)-g(p)) is asymptotically normally distributed with mean

0 and variance 4pT(D p-ppT)p = 4 (PTDP(PTP)
2 ) which is written in the

entries of p in equation (3-10).

Proposition 3-2a. Let S(X,Y) be the smear of the NNC matrix for words I

and Y . Under the independence model,

ES(X.Y)= a2 (3-13)

and as m-->- and n- - subject to m=o(n2 ) and n=o(mZ),

$ $
1 2

VarS(!,1)"- I (22(2 pk + Pkqt2 2
)(3-14)

k1 1 k=

(2a2( p2q) + P q,)1 - 3 (_L + -1) a4.
kul k=

If (m/I)--X as a and a -->" the smear is asymptotically normally

distributed

4M(SI.Y) a.) Z-* M(0,V)

with V = lim mVarS(X,Y) as m--)-.

Proof. The smear of the NNC matrix for I and Y can be written as
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S(Y-i j=i (3-15)

* where

ly+)m1 if l- and Xi44-yj+i (3-16)
i~;j0 o therwise.

There fore,

and

VarS (17Y)
U-1 U-i rn-i1 n-i

________ 1 ~ Cov((1 1 5  7 i

2o eva3ae-37))o

* rni) (n.1)ixj,; j. ijl) 4-i' j' + i~vr~) (3uu-18)"v~

and rewruate (quat7) let7 a

fM-1 n-i

K~SI) a2 rewrit (3aton(397)a

j =

WevlaeVfor i=2,..;,rn1l and j=2,...,n-l.arsuhtt

if

eithr liulLor Ij-v1!1 as presented in figure 3-1. We now compute

tercontributions.

If -i nd v-jl~i,

Uo (i1~;jYjl,43UIUJY~v,)

E4l'x~~j~j14(j* ly~y)a4
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4j V,-Ai+1-,j+1lv+1

S

p, qj2' 4. (3-20)

i.3-1 ralues of ui and v for which±

cov 4 Y .-. I.u~l v I v- I)=Ofor i and j fized.

Tf u=j!1 and Ii-vi>li

I.~i j ~ U-" Yv YV+1 ) a a) (-1

* Simlliarly, if vj anid li-ui >



41

=o~( A, .
2 

atj
2

-
4

, (3-22)

k-1

and if v-j±1 and LiuI>i,

S

Cov(4(Xi.X ~ yi Y j) ,( *VIY ly+, Pk 2 ak02)(-3

k= 1

As indicated in figure 3-1 for fixed i2 -1and V= ai is

a sum of 3(n-4)-3(=-4)-9 nonzero covariances. Of those all Dut nine can

be comuuted from for.mulae (3-2-0) to (3-23), the nine term-s bein;

for ui and v such that tu-iILi or tI-vilfi. These covariances can be

* derived similarly. 'Towever, wie do not need to compute them ezplicitly as

their total contribution to V is 0(l) comtared with that of the other

contributing terms Which may be computed from formulae (3-20) to (3-23)

and is off order C)#n as can be seen from (3-24) below. Thus.

Vi = ov' (~ XX l1;Y1, Y 4(X-upu~~ V

I >1J)

ui-1 Iv-j I>1

46-~ 2 Zo0~X jo((( ;Y I X .~l Y ( jt Y' j~)),%luYvy

Each of the four sums in tae above equation can be com-outed bv

substituting forrmulae in (3-21) to (3-24) for the covariances in the

four sums above to obtain

V 2( - pjq' a2 a-)(pq. 4

aj

- - - -.. -. -. . . . . . - - - . -.. . -. . .. - 2 4 - -- - - *-
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0

7he value of Vij when i=l or j- is slightly different from the

expression in 3-2. .lowever,

,-1 U-i n-I M-i

vii is of order o(mi n)+O(n 2  whereas V and V11

i=2 j=' j=l i=l

_.ence, as n- and n- o subject to -=o(n) and n=o(m2),

m-1 n-

VarS(X,Y) ," Z V
(M-)2 (a-l)l i=2 j=2

1 (aZ(2' 2,,a-a2) + 4 2k)_4

40

' ' : T 2  2_

S.(2 _a a " : oa 2 )2 -a 4 ) (3-25)

which equals the -?.-IS of equation (3-14).

To derive tre as-riptotic distribution of S(X,Y) let and 1. be

:tze couats of che !-letter syllable ajai in X and Y respectively.

"" 70o rma i1,
-- 1 -i

S ij ":ij= ij
.- 1 k-- i

fr lI(.) the indicalor funmction
_Ii

1 if x=a i and (3-27)
iJ 0 otherwise.

'tote that

•s s s s

_2Z 'i 1 = -n-i .. j ai~~~i=lj=l Il~

and let

and qi. n-i
-a 7n-

be the frequencies of syllable aia j in X and Y. The following notation

-' ' - .. .-- -..' -
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is useful:

MT.('Il #MIs, : ."S11 ) (3-29)

mNT (Nl N1S. '4sl Nss)

-T=(p l *.... Pls ..... psl....1 ' (3-30)
~qT=(qll,.....qlsp ..... qslo .... sqss )  ( - 0

S..... s ..... psl.....Pss(3-31)

-'.&ZT=( 'a . s .... #Is, ..... qss ) ,

In this notation, the smear of tie TIC character matrix can be written as

S S

i=lj=l T
S(.XY)= (m-3)(n-))

Let -(p.q) - p.q.

.2y the differentiability of ( ,

g~p~) = (p,q~) 4(arad f)*(~(J ~% 1 [-J!
where .-- 0 as -+p and -+q. Substituting

(,rad T . a (p,q)

into the above equation, .:ie obtain

S(X.,Y)= -(pq)+ q T.(_p) 4 p.(q)+ en.L . (-

V4ote that the distribution of M and N is not multinomial. The asymptotic

distibution of (and ) is provided by the following lemma.

Lemma 3.1. Under the independence model, j defined by (3-31) and (3-23)

is asymiptotically normally distributed

n (E- ) 4 N(O, 1 )

with

] :':" ;% 'i" ." ',' "" ".:.". ." •.' " . .
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Ili~j;u.v, pi:)jpuiv + pij iujv + pipjv~ju -
3 pi,jpupv (-5

(S ij is the usual Kronecker delta.)

Proof. Let cT.(c1 , .....c:I,... csl,.. . css) boe art arbitrary vector of s

constants. 7-. k3-29) and (3-25)

s s -IIs s

Crlf C ij, ii(
- .. j . i ~j a' a- I

Moe tiat C M is an (.a-1)st sum of 1-dependent variables.

Va r cT H) Z~/ Oi cu cCov(!.i"v

M-1 n-1

and Co 1 COV( 2 Ij'ai'

CL=1

If la-3I)1 by independence, Cov(Iij via+i) .IuXv ,.>)

Hence,

Cov~~~~~~n ! ',I)"V 1r-1C

+o(!~ Cov(I; (X KA~ .1vL#

+j CL CL 1 i( a+i
CL 1

m- 2

+ O(i 13 C~alu alv+ (3-36)

The covariances in the three sums above are:

CoV((I. (X CL A'
ij al U v-,x

=Pr(X% ~,.=a.a=ai,Xa+i=av)-pipjpupv

=PipjPu~iv ?ipjpupv

and similarly,
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cov(i a)ij. , uv( . ax +i)) -- a Pijiu Pv

and Cov(Iij'&a,'a+l) ,Iuv(Xa+l .Xa+2))= PiPjPv 8ju-PiPjPuPv'

Substituting the above formulae for the covariances into (3-35) we obtain

CovCt ij°'v ) = (M-2)( ipjPusiv pijPv6ju-pipjpuPv)

+(.M-l)(Pipj 3iu~jv-pipj PuPv). (3-37)

Therefore Cov(Mi '"v)=(n) and so is Var(CT-). According to the k-

dependent CLT (theorem 7.3.1 of Chun- [3]),

T, N(O, 1)

ijVarCTAi

and consequently im(o -E%) ~ 1(O,1),

the parameters of the distribution given by (3-34) and (3-35).

Le=ma 1 makes the 5 nethod applicable to the expansion (3-33) and the

as;-protic iistribution of the smear of the TC n.atrix easily derivable.

* If (m/n)- as m--> and a-, for p - E; and q - " equation (3-33)

.ecories:

= ~m ~ ~-4 n *fPa. (- q) p()i (S(,,Y c2)  - 4 q .(p ,- p)

Therefore t e L'S is asyr-,ptotically aormally 1ist-i'uta-: vith nean 0 and

variance

~%Tai~laq.

3 ano 11 are ,iven in (3-34) and (3-35) of ler, a 3-1 and the formulae

for £: and 1a2re obtained by interchanging q, for p,. Substituting 2$,

E4, 1 and into the above asymptotic variance we obtain

S S 5 5

11~ P1 q ,. '.q - - k2 31.% 4

k-l k=l I

as asserted in proposition 3-2a.

.. • .. . . .,*
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Remark, again, that the limit of the variance of

equals the variance of the asymptotic distribution.

Proposition 3-2b. Let S(_) be the smear of the NNC matrix for X written

under independence. Then,

s

ES(X= 2(m-2) 3 (m-2)(m-3) r V2
(-i (_- )2  k (m 1)2 (3-38)

kul

and

s s

qm(S(X)--C2 ) =4 NO0. 4( 2v 2 Pk3 + ( Pk)-34 (3-39)

k-1 k-a 1

Proof. The smear of the NNC matrix for I can be written as

i-1 j=l 1 iiij
- S(M)= i + 2 (3-40)

- (rn-1) 2  m-i (m,1)2

for .,.;.,) defined in (3-16). To evaluate ES(M) remark that

li-jl>l E4(XiXi+;XjXj+I ) = P(Xi=1i)F(xi+I= j+I
) - .2 (3-41)

s

if Ii-j =l EvI(%lii;X11Il+I) = P(I=i~l 1 i+.7 = M p 3 . (3-42)

k-1

E(I is given by (3-42) for 2(m-2) of the (m-l)2-(m-i)=(m-i)(m-2) pairs

4 in the summation of (3-40) and by (3-41) for the remaining pairs.

Equation (3-38) is obtained by taking expectations on both sides of (3-

40) and substituting from (3-41) and (3-42) into (3-40).

To derive the asymptotic distribution of S(_) note that

.. .-'.. . . '. . "b " " " " " .. ... : ... . :< ': ' h ..- -- .T. . %% .
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s s

2

for M . defined by (3-26) and defined by (3-31) and (3-28).

Let g(p).IpI2. Since

(grad S )T (S ,... .. s s)  ( p ) =2pT .

S(_X)=S(p) + 2pT . (j-P )+ Cm l P [V .

For p-Ef

s

i(P) j = (ipj =T

and j.1 j-T) _2i Z .;P + 0 (1).

By lemma 3.1 the LBS of the above equation is asymptotically normal with

mean 0 and variance which, computed from (3-35). is

42 : I I pipjpupv(pipjpu6 iv~piPj6iu~jv~pipjpv~ju-pppp

i j av

=4( 2 Pi 3 pj 2Pu 2 + 2 pi3pj 3 + 2 pi 2 pj 3Pv 2 -3-C4).

ij i j i j v

s S

*4(2 P 3 1C2 + (2 P3)2-3.r4)

k-1 k-1

as asserted in (3-39).

If I and Y are two independent identically distributed words,

i.e., if mr-u and pi=qi for all i, both S(X) and S(XY) estimate the same

parameter v of equation (3-12). Propositions 3-1 and 3-2 assert that the

variance of the asymptotic distribution of Jm(S(i)--T) is twice that of

m(S(XY)--) for both the crude and the NNC character matrices.

V
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4. SMEARS ALONG DIAGONALS OF CHARACTER MATRICES FOR STRING DATA

Chapter 2 introduced a variety of character matrices that are very

useful in bringing out visually similarities among different words or

within a word. The visual examination of character matrices - as

insightful as it can be - is only a first step in the analysis of string

data as it is limited in two aspects.

(i) It is stressful to the investigator's eye.

(ii) While bringing out strings that may be shared between the

words under comparison, it falls short of assessing similarities

quantitatively. As a consequence, visual recognition of common

strings is partially subjective.

This chapter addresses the question of how to make the detection of

diagonals objective, i.e. describable quantitatively, and possible to

implement on a machine. We are looking for statistics which reflect

the presence of diagonals in character matrices.

The statistic that has attracted the attention of researchers so

far is the length of the longest common subsequence (LLCS) of the two

words under examination. For 1-(X ...... 1) and Y=(Y 1 .... gYn
)  the LLCS

can be defined as:

max k: myI ily ... i. ik=Yj  for l <il<... <ik< and ij 1<. <jk<n.

Needleman and Wunch [11] were the first to propose the LLCS as a measure

of similarity between genetic sequences. Their method to find the LLCS

was later modified to a more efficient dynamic programming algorithm by

Sankoff (13]. After the LLCS has been computed, the path ((ihjh):lh-<k)

through the crude character matrix of I and Y can be traced for the

- . "..4
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investigator to examine.

The algorithm of Needleman and Wunch suffers from three

drawbacks. If a relatively long string is present in both I and Y, it

will most probably contribute to the LLCS. However, if the common string

is present once in I and in two repeats in Y as shown in figure 4-1,

then of the two different common subsequences of approximately equal

length, the algorithm will only select one and will not let the molecular

biologist know of the internal repeat.

Fig. 4-i. The presence of a relatively long string in both I and Y in

(a) will be most probably detected by the Needleman-Wunch algorithm. A

repeat of the string within Y as in (b) will not be detected.

Furthermore, the algorithm weighs all matches and mismatches in the sam

way, counter to the sense of the statistician that matches in rare

letters should weigh more than matches among rather frequent letters, and

0 the knowledge of the molecular biologist that SOme substitutions on

genetic molecules affect the function of the molecules and the state

of their cells dramatically. whereas others do not. Needleman and lunch

0
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were aware of this problem and mentioned that weights other than 0 and 1

could be used but they provided no hints as to how to obtain these.

weights from data and their remark was later ignored in the mathematical

literature. Finally, little is known of the distributional properties of

the LLCS. Chvatal and Sankoff [4] showed that if L. is the LLCS between

tw words both of leagh n, ELn is superadditive with respect to n, i.e.

ELm+n ELm+ELn , and therefore E(Ln/n) converges to a constant that

depends on the size of the alphabet in which the words are written. They

also provided upper and lower bounds for the limit.

Deken [5] showed that (Ln/n) converges almost surely to a random

variable under a stationarity condition on the LLCS, and that if the two

words are written independently of each other and the alphabet letters

are equiprobable - an assumption untenable for biological data - the

limit is a constant. Finally Steele [141 showed that if the vectors

(Ii,Y i) are I.I.D.. VarLn= O(n) and proposed the replacement of the

LLCS by other statistics in view of its intractability.

Suppose that I=(X 1.... ) and Y(Y 1 ,..., Yn) with It  and Yt

obtaining values in a finite alphabet :a1 .... as), assume that m.n and

let (Mij i-1. .... m j1, ..... n be the CC matrix of I and Y. In the visual

examination of a character matrix, in order to detect substrings common

to both words, the investigator tilts the character matrix, aligns his

axis of vision to the matrix entries (MiDi+kJi1,....min(m~n-k) and

searches for consecutive non-blank matrix entries along the matrix

diagonals [Mi,i+k}.

In order to fix ideas we introduce some new nomenclature. If I and

Y share in common a relatively long substring so that
?S
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Xu=Y u+k'X u+l=Y u+l+k'' Xv = Yv+k
. (4-1)

for iSz and l.u+k.v+kS<n,

then the entries Mu.u~k, %+l, uk+l .... My,v+k will be nonblank as

shown in figures 4-2a and 4-2b and we shall say that words X and Y share

in common a string of length v-u+l lying along the diagonal at lag k, or,

more briefly, that X and Y share a common string at lag k.

Let Mij be the CC matrix for I and Y and suppose that k 0. A long

common string in (4-1) would cause the ratio of non-blank matrix entries

to the total number of entries on the diagonal (Ml1.+k. .... M-k.n) to be

higher than ratios on parallel diagonals of comparable length as

indicated in figures 4-2b and 4-2c. We shall call the ratio of nonblank

matrix entries on (MI1.+k.....M-k n ) to the total number of matrix

entries along the diagonal (i.e. r-k). the diagonal smear at lag k.

For m-n, the process of diagonal smears can be written as:

n-k

I #(j + k

D(k) j 1-k if k On-k

(4-2)
min(n.m+k)

D(k) = if k<O

for 0(.,.) defined in (3-6).

The process of diagonal smears is relevant in detecting common

substrings among 1 and Y because a common substring would cause the

diagonal smear at a lag specified by the string's position in the two

words to be relatively high and, conversely, lags at which diagonal

smears are high could signify the presence of a common substring.

" : '. - i: ...-------------------------------------------------------------- -,. " . .-
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'The proof of the pudding is in the eating.' If the process D(.)

proposed is of any value, it should pick up diagonals where they exist

and indicate that there is nothing of interest where there are no

diagonals. The performance of D(.) will be assessed on chorion proteins

292 and 18B which were examined visually in the development of the

variety of character matrices in chapter 2. The cytochrome c protein of

Tatrahymena pyriformis and the chorion 292 protein were chosen as a

scontrol' pair because it was expected that they would share no

similarity whatsoever as they play very different r~les in the lives of

0 two distant organisms.

Figures 4-3a and 4-3b present the CC and the BNC1 character matrices

for the control pair and illustrate that, as expected, the proteins of

the control pair share no long strings in common. The longest common

string is three letters long, while the longest string common in both

proteins up to non consecutive mismatches is only four letters long.

Figures 4-4a and 4-4b plot diagonal smears vs. lag for chorion

proteins 292 and 18B and the control pair. For diagonals at highly

positive or highly negative lags diagonal smears are computed for a

small number of observations; this is the reason for which the

variability of Dk is higher in the left and right tails of the plots

than in the middle.

As illustrated from their BNC1 matrix on figure 4-5, the three

most prominent strings common to the chorion proteins 292 and 18B lie

along the diagonals at lags -12, -10 and 0, other prominent common

strings lying, in order of diminishing prominence, on the diagonals at

lags -15,-S, -20, 5 and -100. Table 4-1 lists the twenty-four largest
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diagonal smears in decreasing order.

Table 4-1. Sorted diagonal mars for proteins 292 and 18B.

RANK LAG D.SMEAR RANK LAG D.SMEAR
1 -12 .48 13 63 .21
2 0 .36 14 -114 .20
3 -100 .29 15 -129 .20
4 -98 .25 16 10 .20
5 5 .24 17 -83 .20
6 -24 .24 18 -29 .19
7 -10 .22 19 57 .19
8 67 .22 20 73 .19
9 -18 .22 21 -26 .19

10 -2 .21 22 94 .19
11 -5 .21 23 -20 .18
12 -96 .21 24 72 .18

It can be seen from table 4-1 that the diagonal smears at lags -12, -10,

0, -15, -5, -20, 5 and -100 ( where prominent common strings lie ) are

the first, second,- seventh, thirtieth, eleventh, twenty third, fifth and

third largest. If there was a nonblank character along one of the

diagonals of length two, its diagonal smear (.5) would be higher than

any of the above. Clearly, it does not suffice to simply sort diagonal

smears in decreasing order. The threshold above which diagonal smears

should be considered as "significantly' high must depend on diagonal

length.

Under the independence model, both the matrix smear and the

diagonal smear estimate the same parameter. The matrix smear of the CC

matrix for two words is computed from all blank and noublank entries of

the matrix. The diagonal smear estimates a from the ratio of non-blank

characters on the diagonal. Under the independence assumptions the matrix

smear has been proven to be asymptotically normally distributed about

the theoretical smear and the number of non-blank characters on the

diagonal is binomially distributed. Hence, an upper confidence bound from
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the matrix smear and a lower confidence bound for the same parameter from

the binomial data at each diagonal may be computed for a. Throughout the

remainder of the chapter words will be assumed to be written

independently within and between themselves.

Let U be a 1-a1 upper confidence bound for a computed from S
a

through proposition 3-1. Let V be the m.l.e. of the asymptotic variance

V given in equation (3-4). Then, clearly V converges in probability to V

and

UpS 0 (ll4m), (4-3)

where Z1-Q is the (1-a1 ) quantile of the standard normal distribution.

For long words,

Pr(U>a) - 1-al, (4-4)

Table 4-2 lists below the 90%, 95% and 99% asymptotic confidence

intervals for a computed from S by proposition 3-1a.

Table 4-2. Asyuptotic confidence for the theoretical smears of

CCi for protein pairs (292.18B) and (292, Cytochrome c).

I-aILI292, 1B 292. Cytochr. c

.90 (.11-.16) (.06-.09)

.95 (.11-.16) (.06-.09)

.99 (.lO-.17) (.05-.1O).

The length of the confidence interval does not depend crucially on the

confidence level up to the second decimal digit because the estimate of

the asymptotic standard deviation of S in equation (3-2) is small.

Figures 4-6a and 4-6b plot Dk and the asymptotic two sided 95%

confidence interval for a for each of the protein pairs.

Let Lk be an exact 1-a lower confidence bound for a computed from

°. ' _S,"+ i i
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the binomial data along the diagonal of lag k. Suppose that the length of

the matrix diagonal at lag k is N and that there are B nonblank entries

on the diagonal. Lk is defined as:

0 if B-O

Lk N (4-5)
the root of the equation v [N ]xi(l x) N-i= a if B>O,

E' ""i=B

and

Pr(ILk<a) 1 -m2. (4-6)

(See, for example. p. 181. of [1.)

What use is to be made of U and Lk? The hypothesis that a =a is

rejected at level a2 in favour of the hypothesis a > CF if Lk exceeds co .

In our context no ao is given to be tested; a (1-a1 ) upper confidence

bound may be set for the theoretical smear. It is then reasonable to

suspect that when

U < Lk, (4-7)

a string is common to the words I and Y at lag k. and expect that if I

and Y share in common a long string, then inequality (4-7) will hold for

a lag k specified by the position of the string in the two words. Hence

to detect diagonals hosting long common strings, instead of sorting

diagonal smears, we propose to compare Lk to U. Qualitatively, the (Lk)

relate to U as the (Dk) to S; the presence of a long string common to the

two words under examination raises Lk and has little effect on U. The

advantage of Lk ( vs. Dk) is that take into account diagonal length

and consequently the variability of Lk is smaller than that of Dk as can

be seen by comparing plots of Dk and Lk . Figures 4-7a and 4-7b plot

the 97.5% upper confidence bound U and the 97.5% lower confidence bound

.0 : ~ j . . . .. - . -, ,, .;0- ... .. .. . ... . < '' ,i- .' o . '- . . _
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Lk at each lag, for the two selected protein pairs.

The probability of the event at (4-7) is

Pr( U < Lk ) Pr(a_<uL< or U<a<ak or U<Lka)

- Pr(a U<Lk or U<a<L) + Pr(U<a<Lk or U<Lk_ a) - Pr(U<a<Lk)

Pr(a<L k ) + Pr(U<a) - Pr(U<a Lk).

In view of (4-4) and (4-6), an upper bound for the event in (4-7) is:

Pr (U K L'k) Sa, -~ (4-8)

When (4-7) holds, we shall say that the diagonal smear is significantly

larger than the matrix smear at level a+a.,

* As it can be seen from table 4-2, at ai=.02 5, U equals .16 for the

pair of chorion proteins and .09 for the control pair. The lags at

which diagonal smears are significantly larger than matrix smears for

both protein pairs are listed below.

Table 4-3. Lags at vhich diagonal smears are significantly higher than
the CC matrix smears of protein pairs (292,13B) and
(292. Cytochr. c). a1=.0 2 5 , %2=.0 2 5

292, 18B 292, Cyto c

LAG LCB LAG LCB
-12 .39 - -

0 .28 - -

5 .17 - -

At a1=%,.=.025, the proposed procedure detects the matrix diagonals

on which the three most prominent strings common to 292 and 18B lie. No

diagonal smears are significantly higher than the matrix smear at these

levels, in the control pair.

To detect more diagonals one should either lower U or raise Lk,

i.e. increase either a1 or a.,. From table 4-2 it can be seen that ( up to

the second decimal point ) the asymptotic 95% UCB for a is .16.; the lags

. . . .... . . . . ..... •.. ••.:. " . . . - - . -
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of the diagonals at which the diagonal smear is significantly higher than

the matrix smear for al-.05 and ' a.025 are also given by table 4-3.

Figures 4-7c and 4-7d plot the same bounds of a for a,1.0 2 5 and

m2=.05. The lags at which diagonal smears are significantly higher than

matrix smears at these levels are given in table 4-4.

Table 4-4. Lags at which diagonal smears are significantly higher than

the CC matrix smears of protein pairs (292,18B) and
(292, Cytochr. o). a1=.025, a2 =.05

292, 18B 292, Cyt.c
LAG LCB LAG LCB

-100 .17 -72 .09
-24 .17
-12 ,40
-10 .16
0 .29
5 .18

Besides the diagonals already detected in table 4-3, the two next

prominent strings in the BNC1 matrix of the chorion proteins are detected

in table 4-4 and indication is given that a string common to both words

might occur along the diagonal at lag -24. The BNC1 matrix of figure 4-5

indicates that the longest common string along this diagonal is the

tetrapeptide AVAG. On the other hand, in the control pair and at the same

levels, the diagonal smear at lag -72 is significantly larger than the

matrix smear and the detection is void of any biological content. Hence,

the control pair does not allow us to consider the tetrapeptide selected

for the chorion pair as the realization of a legitimate signal.

It was desirable to derive a simultaneous confidence band for a at

each lag. As this has not been attained, a 1-a1 upper confidence bound

for a from S and a 1-% lower confidence bound for the same parameter

from Dk are constructed and the lags of diagonals at which the diagonal

--- - . ... -., : ..... ... ,.. . ... -." , •. . .. -, "..
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smears are significantly larger than the matrix smear are listed for

further examination. To detect the common susbtrings in the data the

investigator now focuses on the selected diagonals. A procedure to

automate this detection will be proposed in chapter 5. In this chapter

the detection is carried out by a visual examination along the diagonals

of the BNC1 matrix.

For i=(XlJ....) and Y=(Y1 ,...,Y,) let m.>n and L O without loss

of generality and lit N = ( ij I be a character matrix at the disposal of

the investigator. The diagonal of N at lag L aligns the substrings

1  ..... Sin-L

YI+L" .. Y. (4-9)

If

a *.Mb~L (4-10)-- a,a L,* '",b L

is the prominent substring of mostly non-blank character entries on the

diagonal of N at lag L, then

I Xa .... lb

YawL ' .... Yb+L (4-12)

are the most similar substrings of I and Y. The substrings of (4-10) can

be thought of as two realizations of a signal in I and 7: the mismatches

between 1i and Yi in (4-12) caused by the imposition of noise on the

signal.

How good is proposed procedure? There are two types of error that the

procedure may commit and which, following the use of the terms in the

statistical literature, we call type I and type II errors.

A type I error occurs when no signal is present in both words and

the procedure comes up with some diagonal smear significantly larger than

' :... .
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the matrix smear. A type I error may be thought of as a 'false alarm'.

No type I error was committed when the proposed procedure was

applied to the control pair at a1=.025 and a.2=.025. A false alarm was

given for the same pair, at u1=.025 and %-.05; one out of the 242

diagonal smears was significantly larger than the matrix smear. If (Lk-U]

were I.I.D. and the upper bound of Pr(L'k>U) in inequality (4-8), was

attained, we would expect that diagonal smears would be significantly

higher than S at approximately 12 and 18 lags for the two sets of

levels chosen. ( Because .05*242-12.1 and .075*242-18.1.) The discrepancy

between the observed and the expected is striking and can be attributed

to two factors: a,+%. is only an upper bound to Pr[U<Lk) and [Lk-U} are

not independent. False alarms suggesting that very few out of hundreds of

diagonal smears are significantly high (in our case I out of 242) are

painless; in requesting the investigator to focus on a few diagonals,

the proposed procedure reduces drastically the volume of work involved in

the visual examination of the data

A type II error arises when a string is common to the two words

but it is not long enough to cause the diagonal smear at the lag

specified by its position in the words, to become significantly larger

than the matrix smear. While the occurrence of a type I error is rather

painless, a type II error is a serious one.

The detection of common strings by comparing U to Lk for each

diagonal was developed while examining chorion proteins 292 and 18B. The

proposed procedure is now applied to the proteins encoded by the

Balbiani ring genes which are denoted by BRI. BR2 and BRC and presented

on figure 4-8a. Figure 4-8b lists the proteins products of the Balbiani

*°o .. . * . .*
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ring genes which will be called BRI, BR2 and BRC proteins. Figure 4-9

illustrates the BNC1 character matrix for proteins BRI and BR2.

underlines the strings most prominently common to the BRI and BR2

proteins. The underlined strings lie on matrix diagonals at lags -173,

-105, -91, -31, -23, -9, 51, 59 and 133. The underlined strings suggest

that there are extensive internal repeats within each of BRI and BR2

proteins; the repeats are illustrated in the BNC1 character matrices for

the proteins on figures 4-10a and 4-10b. For the BR1 and BR2 prc;eins,

S=.120. Asymptotic two-sided confidence intervals of a at different

levels, computed from proposition 3-la, are presented in table 4-5 below.

Table 4-5. Two-sided confidence interval for y from the CC

matrix smear of the BEI and BR2 proteins.

(1-as) Confidence Interval

.90 (.106-.134)

.95 (.104-.136)

.99 (.099-.141)

The process of diagonal smears and the 95% asymptotic confidence interval

for a are plotted on figure 4-11. Figure 4-12a plots U and Lk for

CL=.025, (iz=.Ol. As can be seen from table 4-5. the 97.5% UCB for a from

S is .136. The lags at which (Lk>Ul for %I=.025 and a2-.01 are given in

table 4-6 below.

Table 4-6. Lags at which diagonal smears for the CC matrix of the Bli and

B22 proteins are significantly higher than matrix smear. a.-=.025, a2=.01.

LAG LCB

-173 .366

-105 .197
- 91 .201

- 31 .166
- 23 .181

51 .212
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If the strings detected visually and underlined on figure 4-9 are

regarded as nine legitimate signals, table 4-6 indicates that at

i1=.025, a2 =.01 the proposed procedure commits no type I errors; it

selects what appear to be the strongest six out of the nine signals on

the BNC1 matrix of figure 4-9. To obtain the remaining signals - and at

the risk of the occurrence of type I errors one must increase a, or a2 .

For al as large as .05, U- .134. At a1-.05o cL2 =.O1. the procedure will

still come up only with the smears of table 4-6 as significant; it is

rather stable for fixed a.2. Figure 4-12b plots U and Lk for c1-.025 and

e =.025. The lags at which diagonal smears are higher than the matrix

smear are given by table 4-7 below.

Table 4-7. Lags at which diagonal smears for the CC matrix of
the BR1 and B2 proteins smears are significantly
higher than matrix smear. i1=.025, (z2=.025

LAG LCB
-173 .395
-105 .210
- 91 .214
- 31 .176
- 23 .192

51 .226
59 .139

143 .150
146 .139
152 .152

At ai=. 025 and a=. 025, four more lags - besides the lags listed

in table 4-6 - are selected : 59, 143, 146 and 152. Of those, the first

one was detected after a visual examination of the BNC1 matrix on figure

4-9. No false alarms are given at the three remaining lags; strings are

4
common to the BRI and BR2 proteins, but they were not as prominent in

their BNC1 character matrix to be picked up in the initial Visual

examination of the matrix. Finally the relatively short strings
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underlined at diagonals of lags -9 and 133 should be considered as cases

of type II 'rrors when the procedure is operated on the BR1 and BR2

proteins at ai=.025 and a2 =.025.

The strings underlined on the diagonals at lags 133 and -9 are too

short to cause the corresponding diagonal smears to be significantly

larger than the matrix smear. However, had protein BRI been

investigated for internal repeats, the two strings could have been

detected from the strings underlined at lags 51 and -91 ( at which as

shown in tables 4-6 and 4-7 the diagonal smear is significantly higher

than the matrix smear for both choices of a, and a-2 ) and the type 1I

-. errors would have been eliminated.

For notational convenience denote the BR2 and BR1 proteins by

and Y respectively. The substring underlined on the diagonal at lag 133

aligns the octapeptide

127 ... 134

to Y160 'Y168' (4-12)

The substring underlined on diagonal at lag 51 aligns

f 127 "'" 163 (4-13)

to Y78 "" l14"

The most prominent diagonal of the BNC1 matrix for the BR1 protein on

figure 4-10a (except for the trivial diagonal at lag 0) indicates that

the substring Y1 ...Y82  is duplicated (exactly, with no mismatches) in

Ya..yl64. The repeat unit is partially triplicated in Y165 ...Y1 6. With

the understanding that entries in the same column are mostly identical,

the repeat structure of BR1 may be summarized as:

W1 ... T4 .. Y78 Y82
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Y83".. Y86 " Y160 .. Y164 (4-14)

Y165".. Y168

Hence the common string of (4-12) can be inferred from those of (4-13)

and (4-14) which are long enough to be detected. This suggests that

before the procedure is applied to two different words it should be

applied to each word for an investigation of internal repeats.

The proposed procedure depends on the parameters a, and c.2. It is

desirable that the diagonals selected by the procedure be stable when

the chosen levels a, and a2 axe slightly perturbed. The procedure depends

on a, only through the quantile ZIa in U of equation (4-3). When al'2a ,

the set of selected diagonals at alland 0.2 includes the set of diagonals

selected at a, and a-2 . Table 4-8 sorts the twenty largest Lk for the two

different values of a2 at which the BRI and BR2 proteins were examined.

Table 4-8. The twenty largeat Lk for 31 and B2 proteins,

(.z2-01 aL2 -. 025

LAG LCB LAG LCB
-173 .37 -173 .39

51 .21 51 .23
-91 .20 -91 .21

-105 .20 -105 .21
-23 .18 -23 .19
-31 .17 -31 .18
59 .13 152 .15

143 .13 143 .15
152 .13 59 .14
16 .12 146 14

-19 .12 16 .13
146 .12 -19 .13
13 .11 149 .13

-93 .11 133 .12
-11 .11 13 .12
90 .11 90 .12
42 .11 -93 .12

133 .11 42 .12

-52 .11 -11 .12
87 .11 -161 .12
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The table indicates that for both values of the six largest

lower confidence bounds occur at the same diagonals. Eighteen out of the

twenty lags listed for each value of a2  overlap. The two non-

overlapping lags for each value of %1 being the lags for the twenty-first

and twenty-second largest Lk at the other value of a.The proposed

prcdr ossssadsrbe tblt o
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5. AUTOMATED DETECTION OF SIGNALS WITHIN TWO WORDS.

Chapter 4 introduced a procedure which automates partially the

visual examination of character matrices of two words by focusing on the

matrix diagonals for which the diagonal smear is significantly higher

than the matrix smear. The detection of the common strings lying on the

diagonals selected was carried out visually in chapter 4. This chapter

proposes another procedure to automate the identification of the string

most prominently shared in common by the two words under comparison.

When a string will be referred to as shared in common by words X and Y,

it will be understood that a substring of I will be identical to a

substring of Y except for a few occasional mismatches.

The proposed procedure Is applied on matches and mismatches between

substrings of the two words under comparison at all possible lags without

taking into account the nature of the particular matches and mismatches.

A procedure assigning weights to the latter is presumably more powerful

O* than the one proposed here.

Suppose that the diagonal at lag L in the CC matrix of words

1=(X 1 ..... Xm ) a d y=(Y1 ...,Yn)  is of length N. For notational

convenience we denote the diagonal entries as

Z1  ..... ZN. 'i

For the diagonal at lag L, Zi 
= (Xiyi+L), defined by equation (3-6).

In this chapter nonblank and blank matrix entries will be denoted by 1

and 0 and will be also called successes or matches and errors or

mismatches. Independence between and within X and Y is assumed throughout

the chapter. Under this assumption Zi are I.I.D and the probability that

Z i is a nonblank character equals the theoretical smear of equation (2-3)

I
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which in this chapter is denoted by p. ( Instead of a used in chapters 2,

3. and 4.) A string shared in common by X and Y will be called a

signal. A signal at lag L will show up as a substring of (5-1) with a few

occasional errors. Since only a few occasional mismatches are allowed in

the realizations of the signal in the two words, detecting a signal

common to X and Y at lag L can be thought of as detecting a substring of

Z1 0 ... ZN such that the probability of a success within the substring is

higher than the probability of a success outside it.

The procedure proposed for the detection of the signal depends on

two parameters p0 and pl p0  pl. p0 is the probability of a success in

the absence of a signal. p, is a lower bound for the probability of a

success in the signal. p0 and p, are specified by the investigator. It is

sensible to take p0 to lie within the conventional confidence intervals

for the theoretical smear computed from proposition 3-1. p1 should be

close to 1.; the smaller the pl, the larger the probability of a mismatch

allowed by the investigator. It is desirable that the results of the

procedure do not depend crucially on the choice of p0 and pl.

Suppose that 1 . i < j . N and let Lij(p0,Pl) be the generalized

log-likelihood ratio (GLLR) for the hypothesis testing problem

H0: P = P0 vs. HA: P > P1 (5-2)

based on the substring

Zi'Z4+ ....Z . (5-3)

Let s1 and so be the number of successes and the number of mismatches

and D=(si/s0+si) be the fraction of matches in the substring (5-3). s1

so and depend on i and j; the dependence is not indicated to avoid

making subsequent expressions cumbersome. The generalized likelihood

ratio (GLR) for the testing problem (5-2) based on the substring in (5-
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3) is:

Sup p51(1-p)l0

p (5-4)

p s1(1-p0 ) SO0

It can be easily verified that the function sllogp + solog(l-p) attains

its maximum at ~. increases in [0,41 and decreases in 0~.1].

Consequently,

ps So-p if p
Sup ps1(1-p)50
p>pl1P 1(-p ~ f P (5-5)

and the GLLR for the hypothesis testing problem in (5-2) from the data in

(5-3) is:

p
S1 log -+ SO log if p1PO '-p0
L (POP,)=(5-6)

p1  1-p1  f

For the specified p0 and pl. the proposed procedure finds the

*_ substring of (5-1) which maximizes the GLLR (5-6) over all the substrings

on the diagonal (5-1). If the maximum GLLR exceeds a critical value which

depends On N, p0 and p1 and will be determined by simulation later in

* this chapter, the procedure detects a signal common to words I and Y to

show up as the substring maximizing the GLLR. Formally, if,

M(p0,p1 ) = Max Lij(po~pl),

LI=p'l fp'l (5-8)
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and M(p0 ,p1 ) is greater than a critical value to be elaborated upon

later, the proposed procedure detects the substring

zI s... .Z3. (5-9)

to be a signal allowing for error with probability less than 1-pl ,

immersed in noise where the probability of a match equals po. We shall

say that the signal is realized as the pair of substrings

X I  is.. X

and YI+LP .... Y+L,

in the data.

The proposed procedure can be considered as a modified GLR for

testing the hypothesis that Zl*...,ZN is a noisy string vs. the

hypothesis that somewhere in the string there exists a signal of success

probability higher than pl. The relation between the two is examined in

Appendix 1.

Remark that if for the substring in (5-9), p p2 p1 , then

Si  so  s i

Sup p (l-p) Sup p (I-p).

p~p1  p22

and therefore Ljj(pooPl)=L1j(pO,P2 ); the same substring will maximize the

GLLR for the choices (pOpl) and (pOP 2 ).

When pi=P o Lij(.,.) reduces to:

p
sI log- + sO log- if PO:, 1-Po

Lij (Po)=

0 if po

which is well known to be the GLLR test statistic for the hypothesis

Ho: P PO vs. HA: P > PO

The proposed procedure was applied to the diagonals at lags 5, 0

• •"j -Jo-O .i.•. . ,o . . - -. . . . .
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and -12 of the CC matrix of chorion proteins 292 and 18B. The diagonals

were listed in table 4-3; at levels a, = a2 =.025, their diagonal smear

was significantly higher than the matrix smears for the chorion 292 and

18B proteins. p0 was chosen at .10 and .17, the endpoints of the 99%

confidence interval for the matrix smear given in table 4-2. For each p o

p1 was selected at p0 and .70, .80, .90, .95.

Table 5-1 presents the substrings of proteins 292 and 18B that

maximize the GLLR for the various choices of p0 and pl. In the discussion

pertaining to tables 5-1, 5-2 and 5-3 the substrings of table 5-1 will be

called signals; the critical values that the maximum GLLR will have to

exceed for the substrings to be legitimately considered realizations of

signals in the data will be elaborated upon later. The detection of the

signal in the data depends on the choice of p0 and pl. but the same pair

of substrings may maximize the GLLR for two different choices of (p0opl).

Next to each pair of similar substrings of table 5-1 is typed a 2 by 5

matrix of characters 0 and 1 is typed. The indices of the matrix elements

correspond to the 2 by 5 choices for (p0,pl) and a matrix element is 1 if

the substring listed maximizes the GLLR for the values of (p0opl)

specified by the indices of the matrix element.

01

0o
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Table 5-1. The substrings of chorion 292 and 18B proteins maximizing the
•GLLR of (5-6) for the 2 by 5 choices for (p0,pl). as
indicate the values of(p0 ,pl) for which the listed substrings
maximize the G132.

LAG
GGLGYEG iiiii
GGLGYEG 11111

0 The first 114 amino acids of both proteins 10000
00000

3STFAFLFLCIQACLVQNVFGVCRGGLGLEGLAAPACGCGGLGYEGLGY 01000
MSTFAFLLLCAQACLIQSVYSYGCGCGCGGLGGYGGLGYGGLGYGGLGY 00000

MSTFAFLFLCIQACLVQNV 00100
MSTFAFLLLCAQACLIQSV 11100

MSTFAFLFLCIQACL 000110MSTFAFLLLCAOACL 00011

GSYGGEGIGNVAVAGELPVAGTIAVAGQVPI IGAVDFCGRANAGGCVSIGGRCTGCGCGCG 11110
-12 GEYGGTGIGNVAVAGELPVAGKTAVGGQVPIIGAVGFGGTAGAAGCVSIAGRCGGCGCGCG 11100

YGGEGIGNVAVAGELPVAGTTAVAGQVPI IGAVDFCGRANAGGCVSIGGRCTGCGCGCG 00001
YGGTGIGNVAVAGELPVAGKTAVGGQVPIIGAVGFGGTAGAAGCVSIAGRCGGCGCGCG 00011

Table 5-2 presents , the ratio of matches for the substrings of

table 5-1 and table 5-3 lists the lengths of the diagonals and the values

of M(.,.) for the substrings of table 5-1.

Table 5-2. Ratio of matches for the substrings of table 5-1.

pl

LAG PO .70 .80 .90 .95

p0=.1
0  1. 1. 1. 1. 1.

P0=.17 1 . 1. 1. 1 . 1.

0 p0 . 0  .38 .53 .80 .87 .87

p0=.17 .80 .80 .80 .87 .87

-12 p0 =.10 .82 .82 .82 .82 .83
p0 =.17 .82 .82 .82 .83 .83
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Table 5-3. Values of M(.,.) attained for the 2 by 5

possible values of (pO.pj).
P1

DIAGONAL P0 .70 .80 .90 .95

LAG LENGTH

116 P0=.10 16.12 16.12 16.12 16.12 16.12
p0=.17 12.40 16.12 16.12 16.12 16.12

0 121 P0=.10 30.95 25.33 25.18 24.17 23.49
p0=.17 17.55 17.55 17.54 17.43 16.75

-12 121 P0=.10 87.50 87.50 87.50 85.69 81.41
p0=.17 61.86 61.86 61.86 60.50 56.22

Notice that for fixed p0 " as p, increases (i.e., as the procedure

allows for a smaller probability of error in the signal) the substrings

maximizing the GLLR are shorter and have a higher ratio of matches.

At lag 5 the heptapeptide GGLGYEG maximizes the GLLR of equation

(5-6) for all selected values of (p0 ,pl). Depending on the values of p0

and Pl" two different substrings on the diagonal at lag -12 maximize the

GLLR. The signal detected for (p0,pl) = (.10, .95), (.17,.90) or

(.17,.95) deletes from the longer signal - detected for the remaining

seven values of (p0,Pl) - its starting dipeptide which contains one

mismatch. On the diagonal at lag 0 four different substrings maximize

the GLLR for the ten choices of p0 and pl. A visual examination of the

substring detected for po=. 1 0 and pl=. 70 reveals that MSTFAFL*LC*QACL

and GGLGY*GLGY are present on its right and left ends. ( The occasional

errors in the common string are denoted by an asterisk.) The substring

on the left maximizes the GLLR when small probabilities of error (pl=.90

or.95) are allowed. Noise intervenes between the two strings. When large

probabilities of error are allowed for (p0=.10 and pl=.70) the matches on

the right and left cover for the noise in the middle and the two signals

together with the intervening noise maximize the GLLR. Similarly, a few

-" . . . . ...'" " " ' " - . .-' - -" ". • ', ."o ' . . . - - , , , . ,-
, . . ,. ,, .,,,* - ' .. ,. ' ." . .- .' . . . . o .. ? . . -'-' _ '
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matches to the right of the string GGLGY*GLGY on the diagonal at lag 0

- cause the substrings consisting of the first 114 amino acids of proteins

292 and 18B to maximize the GLLR for p=.10 vs. p>.10.

The BNC1 matrix for chorion proteins 292 and 18B was presented in

figure 4-5; its visual examination was conducted prior to and

independently of the application of the procedure proposed in the present

chapter. Table 5-4 summarizes the results of the visual examination along

-,lags 5, 0 and -12. When a prominent substring along the diagonal of the

BNC1 matrix begins or ends with a W*N, the realizations of the signal

are taken to start or end one character to the left or right of *.

Table 5-4. Strings shared in common by chorion 292 and 18B proteins

recognized visually at the diagonals of table 4-3.

LAG
GGLGYEGLGGGLGYEGTG

MSTFAFLFLCIQACLVQ and GGLGYEGLGYMSTFAFLLLCAQACLIQ and GGLGYGGLGY

-12 GSYGGEGIGNVAVAGELPVAGTTAVAGQVPI IGAVDFCGRANAGGCVSIGGRCTGCGCGCGGEYGGTGIGNVAVAGELPVAGKTAVGGQVPIIGAVGFGGTAGAAGCVSIAGRCGGCGCGCG

The visual examination of the BNC1 matrix of proteins 292 and 18B

detects common substrings that are selected by the proposed procedure for

the 2 by 5 choices for (p0 ,Pl). The advantage of the proposed procedure

is that it automates and quantifies the detection process.

The application of the proposed procedure may result in the two

types of error that were referred to in chapter 4. Relating to the

detection of a substring common to two words is the problem of the

detection of a string of successes (up to a few occasional mismatches) in

the word of (5-1). The latter will be called the one-dimensional problem

to be contrasted from the former two-dimensional problem. The two types

6

..........................
" . V * * . .. . ,. ** * *
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of error are investigated for the one-dimensional problem first.

The asymptotic distribution of the GLLR Lij(PoPl) of (5-6) for the

hypothesis testing problem in (5-2) has been derived in [2]. The .95

quantile of the distribution of M(.,.) are estimated by simulation.

100 binary strings of length 50, 100, 200 and 300 were randomly

generated with probabilities of success T = .10, .15 and .20. For each

string M(.,.) was computed for p0=.10, .15, .20 and pl= p0, .70, .80,

.90, .95. To facilitate the presentation of the simulation results, the

estimate of the .95 quantile of the distribution of M(p0 ,p1 ) for noisy

strings of length L generated with probability of success n is denoted by

QL(p0,pIIn). Tables 5-5 to 5-8 present the estimates for each

combination of string length L, probability of success in the binary

strings it, and the nominal parameters p0 and pl. The distribution of

-- , M(.,.) is discrete. The .95 quantiles are estimated by the midpoint

between the ninety-fifth and ninety-sixth largest observations for each

combination of parameters. Next to Q(.. .), the largest observation

from the 100 runs is listed in parenthesis in tables 5-5 to 5-8.

Table 5-5. Upper 5% points for M(.,.) estimated from 100 binary strings
of length 50 generated with success probability x.
The largest observations in the 100 runs are listed in
parenthesis.

P1

PO .70 .30 .90 .95

po=.lO 6.91(9.21) 6.91(9.21) 6.91(9.21) 6.91(9.21) 6.91(9.21)
.10 pO=.15 5.69(7.59) 5.69(7.59) 5.69(7.59) 5.69(7.59) 5.69(7.59)

PO=. 20  4.83(6.44) 4.83(6.44) 4.83(6.44) 4.83(6.44) 4.83(6.44)

po0 .10 7.82(12.1) 7.52(12.0) 6.97(11.5) 6.91(11.5) 6.91(11.5)
.15 p0=.15 6.40(9.49) 5.69(9.49) 5.69(9.49) 5.69(9.49) 5.69(9.49)

pO=.20 4.83(8.05) 4.83(8.05) 4.83(8.05) 4.83(8.05) 4.83(8.05)

po=.lO 11.7(13.8) 9.23(13.8) 9.21(13.8) 9.00(13.8) 8.79(13.8)
.20 pO=.15 7.59(11.4) 7.59(11.4) 7.26(11.4) 7.20(11.4) 7.00(11.4)

PO=.20 6.08(9.66) 6.00(9.66) 6.00(9.66) 5.94(9.66) 5.73(9.66)

:. -. .. .. .- . . - . . . . . . . . . . . ., . .- -. . .. . . .- . .. - --. . , .. . . , .-
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Table 5-6. Upper 5% points for X(.,.) estimated from 100 binary
strings of length 100 generated with success probability x.
The largest observations in the 100 runs are listed in
parenthesis.

P1
P0  .70 .80 .90 .95

p0=.10 7.22(9.21) 7.22(9.21) 7.15(9.21) 6.91(9.21) 6.91(9.21)
.10 p0=.1 5.69(7.59) 5.69(7.59) 5.69(7.59) 5.69(7.59) 5.69(7.59)

P0=,2 0  4.83(6.44) 4.83(6.44) 4.83(6.44) 4.83(6.44) 4.83(6.44)

p0=.10 9.21(10.9) 9.21(10.1) 9.21(9.21) 9.21(9.21) 9.21(9.21)
.15 p0=,15 7.59(7.59) 7.59(7.59) 7.59(7.59) 7.59(7.59) 7.59(7.59)
.p0=20 6.44(6.44) 6.44(6.44) 6.44(6.44) 6.44(6.44) 6.44(6.44)

p0=.10 13.1(17.2) 11.4(12.7) 10.0(11.5) 9.21(11.5) 9.21(11.5)
.20 p0=.15 9.34(10.3) 7.86(9.49) 7.59(9.49) 7.59(9.49) 7.59(9.49)

p0=.20 6.56(8.05) 6.44(8.05) 6.44(8.05) 6.44(8.05) 6.44(8.05)

Table 5-7. Upper 5% points for I(.,.) estimated from 100 binary
strings of length 200 generated with success probability x.
The largest observations in the 100 runs are listed in
parenthesis.

P1

P0  .70 .80 .90 .95
po=.lO 6.91(9.21) 6.91(9.21) 6.91(9.21) 6.91(9.21) 6.91(9.21)

.10 p0=.15 5.69(7.59) 5.69(7.59) 5.69(7.59) 5.69(7.59) 5.69(7.59)
p0=.20 4.83(6.44) 4.83(6.44) 4.83(6.44) 4.83(6.44) 4.83(6.44)

po=.lO 10.5(15.4) 9.21(15.4) 9.06(15.4) 9.00(15.4) 8.79(15.1)
.15 po=. 15  7.26(12.2) 7.26(12.2) 7.26(12.2) 7.20(12.2) 7.00(11.9)

PO=.20 6.00(9.96) 6.00(9.96) 6.00(9.96) 5.94(9.95) 5.73(9.69)

po=.1O 18.2(28.1) 11.5(16.1) 11.5(16.1) 11.0(16.1) 10.3(16.1)
.20 p0=.15 9.49(13.3) 9.16(13.3) 9.15(13.3) 8.48(13.3) 7.91(13.3)

po=.2 0  7.33(11.3) 7.31(11.3) 6.97(11.3) 6.69(11.3) 6.51(11.3)

-o
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Table 5-8. Upper 55 points for M(.,.) estimated from 100 binary

strings of length 300 generated with success probability w.
The largest observations in the 100 runs are listed in
parenthesis.

P1
7 PO .70 .80 .90 .95

po=.10 8.98(11.1) 8.24(11.1) 8.06(11.1) 8.06(11.1) 8.06(10.6)
.10 p0=.15 6.64(8.76) 6.64(8.76) 6.64(8.76) 6.64(8.76) 6.64(8.76)

po=.20 5.63(7.01) 5.63(7.01) 5.63(7.01) 5.63(6.95) 5.63(6.58)

Po=.1 0  12.2(16.0) 9.81(11.6) 9.40(11.5) 9.21(11.0) 9.21(10.6)
.15 po=.1 5  7.59(7.59) 7.59(7.59) 7.59(7.59) 7.59(7.59) 7.59(7.59)

Po=.2 0  6.44(7.01) 6.44(7.01) 6.44(7.01) 6.44(6.95) 6.44(6.58)

po 0=.O 24.5(26.6) 13.7(15.3) 11.5(13.8) 11.5(13.8) 11.5(13.8)
.20 p0=.15 10.3(13.3) 9.49(11.4) 9.49(11.4) 9.49(11.4) 9.49(11.4)

po=.20 8.05(9.66) 8.05(9.66) 8.05(9.66) 8.05(9.66) 8.05(9.66)

Tables 5-5 to 5-8 indicate that when p0 ir the estimate L(PO,Pl I)

is stable over choices of P, at all string length. It is expected that

as total string length increases, the quantiles of the distribution of

M(.,.) increase, the increase (expected) to be more noticeable for

shorter strings. This holds in all the 144 comparisons of estimates of

quantiles in tables 5-5 to 5-8 with thirteen exceptions. In particular,

QIOO(. l O p l j . l O ) > Q2 00(. O ,p l I.10) for p1=.10,.70,.80

Qioo(.15,plI.15) > Q2 0o('15pll
"15) for p1=.l5,.

70,.80,. 90,.9 5

and Q200(.20.p1I.15) > Q200(.20,p1I.15) for p1=.20,.70,.80,.90,.95.

An examination of the simulation data of length 200 indicates that for

all the above values of n,pl and P2 either the ninety-fifth or the

ninety-sixth largest simulated observations equal Q10 0 (p01 ,pln). The

discrepancy is minor and does not deserve further attention.

Note that when 0" Q.(p 0,ppll) > Q.(p 0 ,p1jp 0 ) . As a result,

when Q.(poPlIpo) is used as a critical threshold and noisy data are

produced with success probability n > P0' the probability of a type I

error (false alarm) becomes considerably higher. For example, for noisy

strings of length 50 generated with success probabilities .15 and .20 the

~~~~~.... ............................................. ,....... ... ... .*... .,,{' .
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probabilities Pr(M(.l0,.95) Q50 (.10,.95.10) are estimated to be .15

and .30. For noisy strings of length 200 and success probabilities .15

and .20, Pr[M(.10,.95) Q200 (.10-.951.101 is estimated to be .43 and

.67 respectively.

The complete statistical assessment of the procedure requires the

investigation of the probabilities of 'false alarm' in conjunction with

that of no detection of a signal present in the data. To this purpose, 50

,;rings of length L= 50, 100, 200 and 300 were generated. The strings

consisted of signals of lengths S= 5, 7, 9, 11, 13 and 15 of

probability of success a= .90 implanted into noise of success probability

a- .15. In the remainder of the chapter signals and noise will be

understood to be Bernoulli variables with success probabilities a= .90

and n= .15 respectively. Signals were implanted at one tenth and half of

the noisy string length. Values used as critical thresholds will be

explained further on. If for some run M(.,.) exceeds the critical

threshold value, the substring for which M(p0 ,pl) is attained, is

detected by the procedure.

Use of (a,) curves is made to present the performance of the

proposed procedure when applied with parameters p0=.10,.15,.20 and

p1=.
80,.90 ,.95 on the simulation data. The (a,A) curves for the detection

of signals of length S implanted in noisy strings of length L-S are

curves passing through the points (ai,pi). ai and Pi correspond to the

choice of several critical thresholds C.. Criteria CI were chosen to be

the midpoints between the values attained by the maximum GLLR M(p0 ,pl)

for the 100 noisy strings and the 50 strings where signals were

implanted. al is the estimated probability of a 'false alarm' when the

procedure with parameters p0 and p1 and critical threshold Ci is applied

........................................ . .
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to noisy data of length L. Ai is the estimated probability of no

detection when the same procedure (with parameters p0. p1 and Ci ) is

applied to noisy strings within which signals of length S have been

implanted, as explained. ai depends on 71, the test parameters Ci, PO,

and p, and the total signal length L. In addition to these parameters,

i depends on a (a- .90 in this study), signal length S and the position

in which the signal is implanted within the overall string. This

dependence of ai and Pi is not explicitly denoted to avoid making

expressions cumbersome.

Figure 5-la presents the nine (a,P) curves corresponding to the

choices p0=.10,.15,.20 and p1=.
80 ,.9 0 ,.9 5 for the detection of a signal

of length 5 implanted at the first tenth of the noisy string of 45

characters. Figures 5-lb and 5-1c plot the same curves for signals of

length 7 and 9 implanted at the first tenth of noise, the overall

strings being 50 characters long. Figure 5-ld plots all 27 curves in the

same frame. Figures 5-2a to 5-2d present the same plots for signals of

length 5, 7 and 9 implanted in noisy strings at the first tenth of noise,

overall strings being 300 characters long. Figures 5-3 and 5-4 plot the

corresponding curves for signals of length 5,7,9 implanted at the middle

of noise, overall strings being 50 and 300 characters long.

The proposed procedure is rather powerless in detecting signals of

length 5 implanted in noisy strings of 295 characters. When the signal is

implanted at the first tenth of the total string length, for all nine

values of (p0 ,pl) p0=.10,.15,.20 and p1=.80,.
90,.9 5 there is no critical

threshold value C for which the two estimated probabilities of error ai

and Ai are both less than 15%. This is illustrated in figure 5-2a; lying

on the unit square, the (aj) curves do not cross the square

° " " " ' " ' " " . ... " • . . . . . . .. :
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C0.,.15]x[0.,.151. Figure 5-4a illustrates that when a signal of 5

characters is implanted at the middle of the overall string of 300

characters, for no critical thresholds are the estimates of the

probabilities of two kinds of error less than 20% because it is very

likely that in a noisy string of 300 characters and success probability

there will exist a string of no less than four successes. Neither is the

procedure particularly powerful in detecting a signal of five characters

implanted within a noisy string 45 characters. When the signal is

implanted at the first tenth of the overall string, there are criteria Ci

for which both ai and Ai are both less than 15%, but not less than 10%.

When the signal is implanted at the middle of the overall string length,

for C=6.98, p0=.10 and pl=.S0, a=.05 and 0=.08.

The curves in figures 5-1c, 5-2c, 5-3c and 5-4c indicate that the

proposed procedure is quite powerful in detecting signals of length 9

implanted in noisy stings of length 45 and 295. Since the scales in which

the (a,A) curves are drawn do not allow the estimates of the

probabilities of the two kinds of errors to be read, test parameters

(critical threshold C, p0 and pl) for which estimated probabilities for

the two kinds of errors are small, are presented in tables 5-9 to 5-12.

,0
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Table 5-9. Critical values and estimates of the probabilities of the two
kinds of errors when detecting a signal of length 9 implanted at the

first tenth of a noisy string of 41 characters by M(po.pl). z.15,o.90

P1

.80 .90 .95
C a 0 C a P C a A

6.98 .05 .0 7.85 .04 .0 7.32 .04 .0
7.89 .04 .0 9.00 .03 .02 8.05 .04 .02

".1 9.19 .03 .0 10.1 .03 .04 8.79 .03 .02
PO. 1 0  9.89 .03 .02 11.3 .02 .04 9.59 .03 .04

10.9 .03 .04 12.6 .0 .06 10.7 .02 .04
12.6 .00 .06 14.6 .0 .08 12.6 .0 .06

6.31 .04 .0 6.08 .04 .0 6.05 .04 .02
7.05 .03 .0 6.65 .04 .02 6.99 .03 .02

7.37 .03 .02 7.20 .03 .04 8.54 .02 .04
PO 8.20 .03 .04 7.93 .03 .04 10.4 .0 .06

9.16 .02 .04 8.81 .02 .04
10.4 .0 .06 10.4 .0 .06

* 5.19 .04 .0 4.85 .04 .0 4.93 .04 .02
5.56 .04 .02 5.15 .04 .02 5.73 .03 .02
6.01 .03 .02 5.94 .03 .02 7.24 .02 .04
6.69 .03 .04 7.24 .02 .04 8.85 .0 .06

7.49 .02 .04 8.85 .0 .08
8.85 .0 .0

Table 5-10. Critical thresholds and estimates of the probabilities of the

two kinds of errors when detecting a signal of length 9 implanted at the
* firib tenth of a noisy string of 291 characters by (p0opl). x=.1S,

P:L

.80 .90 .95
C a A C a p C a A

9.27 .06 .02 10.1 .02 .04 9.59 .02 .04
. 9.73 .03 .02 11.2 .0 .14 10.3 .01 .14

PO 10.5 .02 .04 11.5 .0 .18
11.3 .01 .04

7.04 .17 .02 7.92 .02 .04 7.42 .13 .06
7.26 .15 .02 8.43 .01 .14 7.91 .01 .14

po=.15 7.48 .14 .04 9.05 .0 .14 8.86 .0 .14
8.13 .02 .04
8.74 .01 .04

6.00 .14 .04 5.90 .14 .04 5.19 .13 .06
* 6.68 .02 .04 6.40 .13 .06 6.51 .01 .14

6.97 .01 .14 6.69 .01 .14
7.73 .0 .14

K'~" . ... . - - - - - - - - - -
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Table 5-11. Critical thresholds and estimates of the probabilities of the
two kinds of errors when detecting a signal of length 9 implanted at the
middle of a noisy string of 41 characters by N(p0 ,pL). x-.15, u-.90

Pl

.80 .90 .95
C C £ C £

7.50 .04 .0 9.00 .03 .02 8.79 .03 .02
8.43 .04 .02 10.1 .03 .04 9.59 .03 .04

po=.lO 9.76 .03 .02 11.3 .02 .06 10.3 .02 .04
10.9 .03 .04 12.6 .0 .10 11.1 .02 .06
11.3 .03 .06 13.5 .0 .14 12.2 .0 .10

6.32 .04 .02 7.20 .03 .02 6.99 .03 .02
7.27 .03 .02 7.93 .03 .04 7.91 .02 .04

pO-.15  8.14 .03 .04 8.84 .02 .04 8.86 .02 .06
8.75 .03 .06 9.05 .02 .06 9.80 .0 .10
9.16 .02 .06 9.94 .0 .10

5.20 .04 .02 5.14 .04 .02 4.93 .04 .02
6.01 .03 .02 5.94 .03 .02 5.73 .03 .02

po=.20 6.69 .03 .04 6.69 .02 .04 6.51 .02 .04
6.97 .02 .04 7.50 .02 .06 7.31 .02 .06

7.53 .02 .06

Table 5-12. Critical thresholds and estimates of the probabilities of the
two kinds of errors when detecting a signal of length 9 implanted at the
middle of a noisy string of 291 characters by I(popl). X-.15. a-.90

PI

.80 .90 .95
C a C a C a
9.27 .06 .02 10.1 .02 .0 9.59 .02 .0

po-.XO 9.40 .05 .0 11.2 .0 .02 10.3 .01 .0
9.73 .03 .0 11.0 .0 .02
10.5 .02 .0
11.3 .01 .0

7.48 .14 .a 7.20 .14 .0 7.42 .13 .0

Po.15 8.13 .02 .0 7.92 .02 .0 7.91 .01 .0
8.74 .01 .0 8.43 .01 .0 8.86 .0 .04

6.68 .02 .0 6.40 .13 .0 6.51 .01 .0
po=.20 6.97 .01 .0 6.69 .01 .0 7.31 .0 .04

7.53 .0 .02 7.12 .0 .02
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Since for all nine choices of (p0,pl), there are thresholds for

which the probabilities of the two types of error are both less than .05

the proposed procedure is illustrated to be quite powerful and robust in

detecting a signal of length 9 implanted in the middle of noisy strings

as long as 291 characters. The procedure is weaker when the signal is

implanted at the first tenth of the noisy string.

When a signal of 7 characters is implanted at the first tenth of

a noisy string of 293 characters, for no values of test parameters C,

p0 and Pl, are the probabilities of both types of error less than 10%.

When the signal is implanted in the middle of the noisy string (of 293

characters), it is only for p0=.10 and pl=.80 that both probabilities can

become less than 10%. In particular for

C=9.40 m=.05 and 0=.02

and C=9.73 a=.03 and 0=.08.

The procedure is more powerful in detecting a signal of length 7 within

noise 43 characters long. Test parameters for which the two types of

error are less than 10% are given in table 5-13. Each cell of table

5-13 considered as a three-way table comprises of two triplets for C, a

and 0; the top for signals implanted at the first tenth of the noisy

.O

string and the bottom for signals implanted at the middle.

.. - . .. . . .. . ".* .- i ,. • , - -'/ o " *", *. " . .'. v I -. .-* . ._. .. .
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Table 5-13. Critical thresholds and estimates of the probabilities of the
two kinds of errors when detecting a signal of length 7 implanted at one
tenth (above) and the middle (below) of a noisy string of 43
characters by N(popl). *-.15o a-.90.

P1

.80 .90 .95
C a C a C a

6.98 .05 .0 7.85 .04 .04 7.64 .04 .04
6.98 .05 .0 7.85 .04 .06 7.64 .04 .06

7.22 .04 .0 9.00 .03 .06 8.79 .03 .06
7.22 .04 .0 9.00 .03 .08 9.18 .03 .08

8.15 .04 .04
PO-.1O 7.68 .04 .04

9.06 .03 .04

8.43 .04 .06

9.34 .03 .08
9.19 .03 .06

6.31 .04 .04 6.26 .04 .04 6.05 .04 .04
5.69 .04 .04 6.26 .04 .06 6.05 .04 .06

7.05 .03 .04 7.20 .03 .06 6.99 .03 .06
P0 ='S 6.32 .04 .06 7.54 .03 .08 6.82 .03 .08

7.37 .03 .06
7.05 .03 .06

5.20 .04 .04 5.14 .04 .04 4.93 .04 .04

5.20 .04 .06 5.14 .04 .06 4.93 .04 .06

PO=.20 6.01 .03 .06 5.94 .03 .06 5.73 .03 .06

6.25 .03 .08 5.90 .03 .08 5.91 .03 .08

The two errors considered thus far were 'false alarms' and no

detection when a signal is present. It is possible however, that the

procedure detects a signal but detection is not accurate. Detection is

perfectly accurate when the snbstring maximizing the GLLR is identical

0 to the implanted signal. However, given that errors are allowed within

signals, perfectly accurate detection is overly restrictive: in analyzing

the simulation data for accurate detection, allowance has to be made for

moderate deviations between the two substrings. These deviations are

measured in an ad hoc fashion by the sum of the distances between the

beginning and endpoints of the two substrings. Formally, if the implanted

- -o ,. o . . . . . .. *- . .• . * ,.- . . . . . .
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signal within ZlZ 2 ... ZN is ZAIZA+1 ... ZB and the substring maximizing

M(p 0 ,pl)is ZIZI+1, .... Z3 , the deviation between the two substrings is

taken to be D=II-AI+j1-B j . The detection of the implanted signal is

considered accurate if the sum is not larger than the smallest integer

larger than half the length of the implanted siy' In particular,

signals of length 5,7,9,11,13 and I are considered to be accurately

detected if the sum is not larger than 3,4,5,6,7 or 8. Since the

performance of the proposed procedure in detecting a signal of length 5

is not satisfactory, its performance in detecting accurately will be

examined only for signals of length 7,9 and 11.

Figures 5-Sa, 5-5b and 5-5c plot the (a,3) curves for accurate

detection of signals of length 7, 9 and 11 implanted at the first'tenth

of noisy strings, the overall string length being 50. Nine curves are

plotted on each frame, corresponding to (p0 ,pl) for the choices

*p 0=.10,.lS,.
2 0 and p1 =.80,.90,.95. Figure 5-5d superimposes all 27 curves

on the same frame. Figures 5-6 plot the same curves for signals of length

7,9 and 11 implanted in noise, the overall string length being 300.

On some of the plots on figures 5-5 and 5-6, the probability of

accurate detection cannot be made larger than 98%, i.e. P cannot be made

less than 2%, no matter how large the a, i.e. even for very small

critical thresholds. This is so because a relatively large number of

mismatches in the implanted signal may cause a substring of the noisy

string to maximize the GLLR in the overall string. Figure 5-7 lists the

substrings maximizing the GLLR and the maximum GLLR M(p 0 ,pl) attained for

the nine choices of (p0 ,pl) when the procedure is applied to detect a

signal implanted at sites S to 11 and the overall string length is 50

characters. With one exception marked on the figure, in all 50 runs the
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substrings maximizing the GLLR are close to the implanted signal.

" Since the scales on which figures 5-5 and 5-6 are drawn do not

allow the probabilities of 'false alarms' and no detection or non-

accurate detection to be read off, criteria for which the estimated

probabilities are small are listed in tables. Tables 5-14 and 5-15 list

criteria for which the estimated probabilities of the two kinds of errors

are small when the procedure is applied to detect accurately signals of

length 7 and 9 implanted at the first tenth of noisy strings of length 43

and 41.

Table 5-14. Critical thresholds and estimates of the probabilities of the
two kinds of errors when detecting accurately a signal of length 7
implanted at the first tenth of a noisy string of 43 characters by
x(Po, Pl).

P1

.80 .90 .95
C a 0 C a C aC

6.98 .05 .08 7.85 .04 .10 7.64 .04 .08
PO 7.22 .04 .08 9.00 .03 .12 8.79 .03 .16

7.05 .03 .10 6.26 .04 .08 6.05 .04 .06
PO- 15  7.37 .03 .12 7.20 .03 .10 6.99 .03 .08

5.20 .04 .06 5.14 .04 .06 4.93 .04 .06
- PO20 6.01 .03 .08 5.94 .03 .08 5.73 .03 .08

Table 5-15. Critical thresholds and estimates of the probabilities of the
two kinds of errors when detecting accurately a signal of length 9
implanted at the first tenth of a noisy string of 41 characters by

PI

.80 .90 .95
C a C a C a

7.98 .04 .02 10.1 .03 .04 8.79 .03 .02
PO 9.19 .03 .02 11.3 .02 .04 10.7 .02 .04

. 7.37 .03 .02 7.20 .03 .02 6.99 .03 .02
PO 9.16 .02 .04 8.83 .02 .04 8.54 .02 .04

6.01 .03 .02 5.94 .03 .02 5.73 .03 .02

PO- 2 0 7.49 .02 .04 7.24 .02 .04 7.24 .02 .04
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The procedure is quite powerful and robust; accurate detection is

accomplished with errors of small probability (less than 5%) when the

procedure parameters are selected to be p0=.10,.15,.20 and pi=.80,.
90,.95

while the probabilities of success in noise and signal are .15 and .90.

Since the performance of the proposed procedure in detecting a signal of

length 7 implanted within a noisy string of length 293 was poor, the

operating characteristics of the procedure are given for the accurate

detection of signals of 9 and 11 characters only.

Table 5-16 Critical thresholds and estimates of the probabilities of the
two kinds of errors when detecting accurately a signal of length 9
implanted at the first tenth of a noisy string of 291 characters by

* M(Po.P1 ).

pl

.80 .90 .95
C CL C s C a

=.1 9.74 .03 .06 10.1 .02 .04 9.59 .02 .04
0 10.6 .02 .08

8=.15 .75 .01 .04 7.93 .02 .04 7.42 .13 .06
. 7.91 .01 .14

"O 6.69 .02 .04 6.40 .13 .06 5.90 .13 .06
6.69 .01 .14 6.51 .01 .14

Table 5-17. Critical thresholds and estimates of the probabilities of the
two kinds of errors when detecting accurately a signal of length 11
implanted at the first tenth of a noisy string of 289 characters by
I(POPl).

.80 .90 .95
C a C a C a

9.74 .03 .04 10.1 .02 .0 9.27 .02 .0210.6 .02 .06 12.1 .0 .02

P 0.15 8.75 .01 .02 8.44 .01 .04 7.91 .01 .06

pO=.20 6.97 .01 .02 6.69 .01 .06 6.51 .01 .06

The probabilities of the two kinds of errors listed in tables 5-16 and 5-

0 -.- ./ -,. .. " . -.-.. q. ' . . ... ,.- . .- ."-".- . ." ," .,. . ' . . .-,. . , . .. - - < - .. . . . . . . . . ,. .. . .- -. .-. ". . . . .. . . - ,- .
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10 for accurate detection and detection are not substantially different.

The procedure is quite powerful in accurately detecting a signal of

length 9 within a string of overall length 300 and, as expected, more

powerful and remarkably robust in accurately detecting a signal of length

11.

The two-dimensional problem to detect a signal within two words X

and Y is now briefly addressed. In examining character matrices

visually, the investigator scans each diagonal for substrings with a few

occasional mismatches. In an analogous fashion, the procedure for the two

dimensional problem transforms blank and nonblank characters to 0's and

l's and computes the maximum GLLR along each diagonal for selected values

of p0 and pl. Let the maximum GLLR along the matrix diagonal of lag k be

denoted by (p0 ,pl,k). If M(p0 ,pl,k) is larger than some critical value,

the substrings of X and Y along the diagonal at lag k for which

M(p0 ,pl,k) is attained are considered to be realizations of a common

signal in the data.

Except for the nominal parameters p0 and pl the critical threshold

should depend on the amino acid counts in X and Y; it is chosen to be the

estimated .95 quantile of the distribution of Max(.1(p 0 ,plk)) for random

permutations of the words.

The proposed procedure has been applied to chorion proteins 292 and

18B for po=.20 and pl=.90. Figure 5-8 plots M(pO,pl,k) at each matrix

diagonal. For 100 permutations of protein 18B the 29 largest values of

Max(M(pOPl,k)] are: 11.3, 9.66(3), 8.45, 8.05(24). ( Numbers in

parenthesis denote ties.) Hence, with 8.2 as a critical value the

procedure detects nine signals in (nine) matrix diagonals. The

ralizations of the signals in the data are listed in decreasing order in

4
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M~p01 11.) in table 5-18.

Table 3-19. Realizations of signals detected in proteins 292 and 183.

LAB M(201 p1 )

YGGEGIGNVAVAGELPVAGTTAVAGOVPIIGAVDFCGRALNAGGCVSIGGRCTGCGCGCG 52.9
-12 YGGGIGNVAVAGELPVAGTAVGGQVPIIGAVGFGGTAGMGCVSIAGRCGGCGCGCG

*0 3ISTFAFLELCIQACL 15.4

GGLOYEGLGYGALGY
1~~ GGLGYGGLGYGGLGY 1.

-1 GYEGLGYGALGYDGLGY 1.
-0GYGGLG'YGGLGYGGLGY 1.

-1 GYGALGYDGLGYG 1.
-5GYGGLGYGGLGYG 1.

GGLGYEG 11.3
5GGLGYEG

-1 GGGG1.
CGCGGLG 1.

10 CGCGG11.
GCGCGCG 1.

GYDGLGYG 8.4
-0GYGGLGYG
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2.4

9.2 90L
3.2 2.4 2.9 9.9 2.4 369

ALPHAALH

2.A 9.4

2.2 a .4 2.8 0.0 Ia.4 0.

ALPHAALPHA

Figure 5-1.(a.A) curves for detection by M(p0.pl) of a signal implanted

within noise at first tenth of noisy string . Overall string length L-50.

Po-.0,1520,and pl=.8O.. 9O,. 95 . n-.10, a=.90. (a) Signal 5 characters

long. (b) Signal 7 characters long. (c) Signal 9 characters long. (d)

superimposes plots of a,b and c on one frame.
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0.6 0.2e

L..Jd

ALPMA ALP14A

2.4- 2.4

3.2 0.2
3.3 3.4 3.6 9.3 5.4 a

ALP04A ALP"A

Figure 5-2. (a0 curves for detection by M(p0 ,pl) of a signal implanted

within noise at first tenth of noisy string. Overall string length L=300.

pom.l1elS.D.ZO and pl1 .8OI. 9OD. 9 5. ff-.10, ain.90. (a) Signal 5 characters

long. (b) Signal 7 characters long. (c) Signal 9 characters long. (d)

superimposes plots of a~b and c on one frame.



109

2. A9.64

ALPHA ALPHA

2.4_ 2.4

3.21 a.2

ALP!"A ALP"A

Figure 5-3. (a.0) curves for detection by M(p0 ,pl) of a signal implanted

within noise at the middle of noisy string . Overall string length L=50.

PO .1O,.lS,.2O. and pl1 .8O,9O,95. ff=.10, a-=.90. (a) Signal 5 characters

6 long. (b) Signal 7 characters long. (c) Signal 9 characters long. (d)

superimposes plots of a~b and c on one frame.
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3._ 9.4

3. G.

ALPHA ALPHA

a.3 3.4 2.~ !9.3 a.4

ALPH A ALP"A

Figure 5-4. (a,) curves for detection by M(pOPl) of a signal implanted

within noise at the middle of noisy string. Overall string length L=300.

Po=. 10,.15,.20, and p1=.
80,.90,.9 5 . n=.10, a=.90. (a) Signal 5 characters

" . long. (b) Signal 7 characters long. (c) Signal 9 characters long. (d)

'. superimposes plots of ab and c on one frame.

..........................................-.. .. ..... ... .....



0.4 9.4

9..4
9.3 2.4 9.8 9.9 AL.4

ALPHA API

3.3 .4 3. 6 9.2 9.4 9

ALPHA ALPHA

* Figure 5-5. (a.0) curves for accurate detection by M(p0 ~pl) of a signal

implanted within noise at first tenth of noisily string. Overall string

length L-50. po=.lO,.1S..2 0, and pl-.8O,9O,9 5. ff-.1O, a-.90. (a) Signal

*7 characters long. (b) Signal 9 characters long. (c) Signal 11 characters

long. (d) superimposes plots of &Db and c on one frame.
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0.4 .

9.4

0..9 0,4 9. 9.

ALPHA ALPHA

29 3.6-

2. 4 9.4

0.2 9.4 3981 0 .

ALPHA ALPHA

Figure 5-6. (c~p curves for accurate detection by M(p0*pl) of a signal

implanted within noise at first tenth of noisy string. Overall string

length L-300. po-.lO..lS.. 2O. and pl=.SOD.9O9 9 5 . a-=.10, a-.90. (a)

Signal 7 characters long. (b) Signal 9 characters long. (c) Signal 11

characters long. (d) superimposes plots of a.b and c on one frame.
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* Figure 5-8. M(p0 .pl*k) plotted vs. lag k for chorion proteins 292 and

18B. P0oa.ZO. Pi=. 90 .



APPENDIX 1.

This appendix derives the GLLR test statistic for the hypothesis

* that within the string of independent binary variables Zl,ZZD ... ZN there

exists a substring Z1iZi~1 J... z such that the probability of success

within the substring is larger than that outside it. The GLLR test

* statistic above is related to the test statistic of equation (5-7).

Let

Zi~Z2 ,...IZl..lDZX#.....ZJDZj+lD ... ZN (A-1)

be a string of independent binary variables. We shall refer to l's, and

q 0's as successes and failures. Suppose that the success probability for

the substring

zl~zp .. Ozil~zjj,..#z1(A-2)

is p0 and that for

is p.

Let O<p0(pl(l. We are interested in testing the hypothesis

H10 : VpOp vs- HA:P2Pl. (A-4)

if S1 and So are the numbers of successes and failures for the substring

in (A-3) and Tand To are the number of successes and failures in the

substring in (A-2), ander HA,

SPr(T=t 05T1 =t11S0 =s03S1 s 1)

= 4(4-i+l)] PO t (1-po) toP-+ij p si (l-p) So

and under H0,
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Pr(T +S1= 1 s) N. p1 1 I (l-p0 )

*Hence the GLR for the hypothesis (A-4) is:

Su N(Ji+l)] p ] p 1i Si s i
i~ P P1 11 0  (- 0

(s1 -t1  ) P0  0

Sup [ t(~il) [Si+ (P/Po)5 1((1-P)/(1po))5 O
i'(j p~p1

[si~ti I

Ma Sup (P PO (l-p)/(l-p0 ) )

Is 1+t 1 1 -

Therefore the GLLR test statistic for the hypothesis that for some

substring of Zl,...JZN the success probability is not smaller than p1 is

0 ~W(ii+1)J ~i+i]

=Max log + Lij(PODP1 ),

* for L (p0DPl) defined in equation (5-6). M(p0 ,pl), the test statistic

* of chapter 5, neglects the first term and equals

Max Lij(PoPi).
*i <J
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